1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
/* Copyright (C) 2024 Aryadev Chavali
* You may distribute and modify this code under the terms of the MIT
* license. You should have received a copy of the MIT license with
* this file. If not, please write to: aryadev@aryadevchavali.com.
* Created: 2024-05-08
* Author: Aryadev Chavali
* Description: Entrypoint
*/
#include <algorithm>
#include <chrono>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
#include <raylib.h>
#include <raymath.h>
#include <sstream>
#include <string>
#include <vector>
#define WIDTH 800
#define HEIGHT 600
long mod(long a, long b)
{
return (a % b + b) % b;
}
enum class Type
{
EMPTY,
WALL,
FRUIT,
};
enum class Direction
{
UP = 1,
LEFT = 2,
RIGHT = -2,
DOWN = -1
};
struct Point
{
int x, y;
bool operator==(const Point &p) const
{
return x == p.x && y == p.y;
}
Point operator+(const Point &p) const
{
return {x + p.x, y + p.y};
}
Point operator-(const Point &p) const
{
return {x - p.x, y - p.y};
}
Point operator*(const Point &p) const
{
return {x * p.x, y * p.y};
}
Point operator*(int m) const
{
return {x * m, y * m};
}
Point() : x{0}, y{0}
{}
Point(int x, int y) : x{x}, y{y}
{}
Point(Direction dir)
{
switch (dir)
{
case Direction::UP:
*this = Point{0, -1};
break;
case Direction::DOWN:
*this = Point{0, 1};
break;
case Direction::LEFT:
*this = Point{-1, 0};
break;
case Direction::RIGHT:
*this = Point{1, 0};
break;
}
}
};
template <size_t a, size_t b>
struct State
{
static constexpr double mx = WIDTH / a;
static constexpr double my = HEIGHT / b;
static constexpr double square_size = mx < my ? mx : my;
struct Player
{
Direction dir;
std::vector<Point> points;
} player;
Type grid[a][b];
bool is_player(size_t x, size_t y) const
{
return std::find(player.points.begin(), player.points.end(),
Point{(int)x, (int)y}) != player.points.end();
}
double rescale(size_t grid, bool smaller, double translation) const
{
double x = grid * square_size;
if (smaller)
x += translation;
return x;
}
void draw_grid() const
{
for (size_t x = 0; x < a; ++x)
{
double x_ = rescale(x, HEIGHT < WIDTH, (WIDTH - HEIGHT) / 2);
for (size_t y = 0; y < b; ++y)
{
double y_ = rescale(y, WIDTH < HEIGHT, (HEIGHT - WIDTH) / 2);
if (grid[x][y] == Type::EMPTY)
DrawRectangleLines(x_, y_, square_size, square_size, WHITE);
else if (grid[x][y] == Type::WALL)
DrawRectangle(x_, y_, square_size, square_size, WHITE);
else if (grid[x][y] == Type::FRUIT)
DrawRectangle(x_, y_, square_size, square_size, RED);
}
}
double x_ =
rescale(player.points.begin()->x, HEIGHT < WIDTH, (WIDTH - HEIGHT) / 2);
double y_ =
rescale(player.points.begin()->y, WIDTH < HEIGHT, (HEIGHT - WIDTH) / 2);
DrawRectangle(x_, y_, square_size, square_size, YELLOW);
// Eyes based on direction
double x_eye_1 = x_;
double y_eye_1 = y_;
double x_eye_2 = x_;
double y_eye_2 = y_;
switch (player.dir)
{
case Direction::UP:
x_eye_2 += (9.0 / 10) * square_size;
break;
case Direction::DOWN:
y_eye_1 += (9.0 / 10) * square_size;
y_eye_2 += (9.0 / 10) * square_size;
x_eye_2 += (9.0 / 10) * square_size;
break;
case Direction::RIGHT:
x_eye_1 += (9.0 / 10) * square_size;
x_eye_2 += (9.0 / 10) * square_size;
y_eye_2 += (9.0 / 10) * square_size;
break;
case Direction::LEFT:
y_eye_2 += (9.0 / 10) * square_size;
break;
}
DrawRectangle(x_eye_1, y_eye_1, square_size / 10, square_size / 10, BLACK);
DrawRectangle(x_eye_2, y_eye_2, square_size / 10, square_size / 10, BLACK);
for (size_t i = 1; i < player.points.size(); ++i)
{
const auto &p = player.points[i];
x_ = rescale(p.x, HEIGHT < WIDTH, (WIDTH - HEIGHT) / 2);
y_ = rescale(p.y, WIDTH < HEIGHT, (HEIGHT - WIDTH) / 2);
DrawRectangle(x_, y_, square_size, square_size, GREEN);
}
}
std::vector<Point>::iterator player_head(void)
{
return player.points.begin();
}
bool update_player_head()
{
auto head = player_head();
Point old_position = *head;
Point new_position = old_position;
new_position.y += Point{player.dir}.y;
new_position.x += Point{player.dir}.x;
new_position.x = mod(new_position.x, a);
new_position.y = mod(new_position.y, b);
if (is_player(new_position.x, new_position.y) ||
grid[new_position.x][new_position.y] == Type::WALL)
return true;
*head = new_position;
for (size_t i = 1; i < player.points.size(); ++i)
{
Point cpy = player.points[i];
player.points[i] = old_position;
old_position = cpy;
}
return false;
}
void make_rand_fruit(void)
{
size_t x = rand() % a;
size_t y = rand() % b;
while (grid[x][y] == Type::WALL || is_player(x, y))
{
x = rand() % a;
y = rand() % b;
}
grid[x][y] = Type::FRUIT;
}
void player_fruit_collision()
{
const auto point = player_head();
if (grid[point->x][point->y] == Type::FRUIT)
{
// If only one point currently then put it anywhere
grid[point->x][point->y] = Type::EMPTY;
if (player.points.size() == 1)
{
player.points.push_back((Point{player.dir} * -1) + *point);
}
// Otherwise look at the last two points, calculate a direction
// vector then make the new one
else
{
auto last_1 = player.points.end() - 1;
auto last_2 = player.points.end() - 2;
player.points.push_back(*last_1 + (*last_1 - *last_2));
}
}
}
void reset(void)
{
player.points.clear();
player.points.push_back({a / 2, b / 2});
player.dir = Direction::LEFT;
memset(grid, 0, sizeof(Type) * a * b);
}
};
namespace chrono = std::chrono;
struct Time
{
size_t hours, minutes, seconds;
Time(size_t s)
{
hours = s / 3600;
s -= (hours * 3600);
minutes = s / 60;
s -= (minutes * 60);
seconds = s;
}
std::string to_str(void)
{
std::stringstream s;
if (hours < 10)
s << "0";
s << std::to_string(hours) + ":";
if (minutes < 10)
s << "0";
s << std::to_string(minutes) + ":";
if (seconds < 10)
s << "0";
s << std::to_string(seconds);
return s.str();
}
};
using Clock = chrono::steady_clock;
int main(void)
{
srand(time(NULL));
constexpr size_t X = 10, Y = 10;
State<X, Y> state;
state.reset();
InitWindow(WIDTH, HEIGHT, "snek");
SetTargetFPS(60);
chrono::time_point<Clock> time_start{Clock::now()};
constexpr double max_score = 100;
constexpr double fruit_delta_max = 5;
constexpr double fruit_delta_min = 1;
constexpr auto fruit_delta = [](size_t player_size)
{
return fruit_delta_min +
((fruit_delta_max - fruit_delta_min) *
(1 - (player_size < max_score ? player_size / max_score : 1)));
};
chrono::time_point<Clock> fruit_cur{Clock::now()};
chrono::time_point<Clock> fruit_prev{Clock::now()};
constexpr double update_delta_max = 500;
constexpr double update_delta_min = 50;
constexpr auto update_delta = [](size_t player_size)
{
return update_delta_min +
((update_delta_max - update_delta_min) *
(1 - (player_size < max_score ? player_size / max_score : 1)));
};
chrono::time_point<Clock> update_cur{Clock::now()};
chrono::time_point<Clock> update_prev{Clock::now()};
Direction dir = Direction::LEFT;
bool paused = false;
while (!WindowShouldClose())
{
if (!paused)
{
if (IsKeyDown(KEY_J))
dir = Direction::DOWN;
else if (IsKeyDown(KEY_K))
dir = Direction::UP;
else if (IsKeyDown(KEY_H))
dir = Direction::LEFT;
else if (IsKeyDown(KEY_L))
dir = Direction::RIGHT;
update_cur = Clock::now();
if (chrono::duration_cast<chrono::milliseconds>(update_cur - update_prev)
.count() >= update_delta(state.player.points.size()))
{
update_prev = update_cur;
if (!(state.player.points.size() > 1 &&
((Point{dir} + (*state.player.points.begin())) ==
(*(state.player.points.begin() + 1)))))
state.player.dir = dir;
bool collide = state.update_player_head();
if (collide)
{
paused = false;
// state.reset();
time_start = Clock::now();
}
state.player_fruit_collision();
}
fruit_cur = Clock::now();
if (chrono::duration_cast<chrono::seconds>(fruit_cur - fruit_prev)
.count() >= fruit_delta(state.player.points.size()))
{
fruit_prev = fruit_cur;
state.make_rand_fruit();
}
}
BeginDrawing();
ClearBackground(BLACK);
state.draw_grid();
DrawText(
Time(chrono::duration_cast<chrono::seconds>(Clock::now() - time_start)
.count())
.to_str()
.c_str(),
0, 0, 25, YELLOW);
std::stringstream ss;
ss << "Score: ";
ss << state.player.points.size() - 1;
DrawText(ss.str().c_str(), 0, 25, 20, YELLOW);
ss.str("");
ss << "Next: ";
ss << fruit_delta(state.player.points.size());
DrawText(ss.str().c_str(), 0, 50, 20, YELLOW);
EndDrawing();
}
CloseWindow();
return 0;
}
|