1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./runtime.h"
void vm_execute(vm_t *vm)
{
struct Program *prog = &vm->program;
if (prog->ptr >= prog->max)
// TODO: Error (Went past end of program)
return;
inst_t instruction = prog->instructions[prog->ptr];
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
vm->registers.ret = instruction.operand.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER))
{
PUSH_REG_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
vm->registers.ret = instruction.operand.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP))
{
// NOTE: We use the `ret` register for the result of this pop
data_t d = POP_ROUTINES[instruction.opcode](vm);
vm->registers.ret = d.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV))
{
data_t d =
MOV_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
vm->registers.ret = d.as_word; // will do type punning for me
prog->ptr++;
}
else if (instruction.opcode == OP_HALT)
{
// Do nothing here. Should be caught by callers of vm_execute
}
else
{
// TODO: Error (Unknown opcode)
return;
}
}
void vm_execute_all(vm_t *vm)
{
struct Program *program = &vm->program;
while (program->instructions[program->ptr].opcode != OP_HALT)
vm_execute(vm);
}
void vm_load_stack(vm_t *vm, byte *bytes, size_t size)
{
vm->stack.data = bytes;
vm->stack.max = size;
vm->stack.ptr = 0;
}
void vm_load_program(vm_t *vm, inst_t *instructions, size_t size)
{
vm->program.instructions = instructions;
vm->program.max = size;
vm->program.ptr = 0;
}
void vm_print_registers(vm_t *vm, FILE *fp)
{
struct Registers reg = vm->registers;
fprintf(fp, "Registers.ret = 0x%lX\n", reg.ret);
fprintf(fp, "Registers.reg = [");
for (size_t i = 0; i < VM_REGISTERS; ++i)
{
fprintf(fp, "{%lu:%lX}", i, reg.reg[i]);
if (i != VM_REGISTERS - 1)
fprintf(fp, ", ");
}
fprintf(fp, "]\n");
}
void vm_print_stack(vm_t *vm, FILE *fp)
{
struct Stack stack = vm->stack;
fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max,
stack.ptr);
if (stack.ptr == 0)
{
fprintf(fp, "]\n");
return;
}
for (size_t i = stack.ptr; i > 0; --i)
{
byte b = stack.data[i - 1];
fprintf(fp, "{%lu: %X}", stack.ptr - i, b);
if (i != 1)
fprintf(fp, ", ");
if (((stack.ptr - i + 1) % 4) == 0)
fprintf(fp, "\n");
}
fprintf(fp, "]\n");
}
void vm_print_program(vm_t *vm, FILE *fp)
{
struct Program program = vm->program;
fprintf(fp,
"Program.max = %lu\nProgram.ptr = "
"%lu\nProgram.instructions = [",
program.max, program.ptr);
if (program.ptr == 0)
{
fprintf(fp, "]\n");
return;
}
fprintf(fp, "\n");
size_t beg = 0;
if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT)
{
fprintf(fp, "\t...\n");
beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT;
}
else
beg = 0;
size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max);
for (size_t i = beg; i < end; ++i)
{
fprintf(fp, "\t%lu: ", i);
inst_print(program.instructions[i], stdout);
if (i == program.ptr)
fprintf(fp, " <---");
fprintf(fp, "\n");
}
if (end != program.max)
fprintf(fp, "\t...\n");
fprintf(fp, "]\n");
}
void vm_print_all(vm_t *vm, FILE *fp)
{
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_registers(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_stack(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_program(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
}
void vm_push_byte(vm_t *vm, data_t b)
{
if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm->stack.data[vm->stack.ptr++] = b.as_byte;
}
void vm_push_hword(vm_t *vm, data_t f)
{
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
for (size_t i = 32; i > 0; i -= 8)
{
const word mask = ((word)0b11111111) << (i - 8);
byte b = (f.as_hword & mask) >> (i - 8);
vm_push_byte(vm, DBYTE(b));
}
}
void vm_push_word(vm_t *vm, data_t w)
{
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// By default store in big endian
for (size_t i = 64; i > 0; i -= 8)
{
const word mask = ((word)0b11111111) << (i - 8);
byte b = (w.as_word & mask) >> (i - 8);
vm_push_byte(vm, DBYTE(b));
}
}
#define WORD_NTH_BYTE(WORD, N) (((WORD) >> ((N)*8)) & 0b11111111)
#define WORD_NTH_HWORD(WORD, N) \
(((WORD) >> ((N)*2)) & 0b11111111111111111111111111111111)
void vm_push_byte_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS * 8)
// TODO: Error (reg is not a valid byte register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// Interpret each word based register as 8 byte registers
word ind = reg / 8;
word nth_byte = reg % 8;
word reg_ptr = vm->registers.reg[ind];
byte b = WORD_NTH_BYTE(reg_ptr, nth_byte);
vm_push_byte(vm, DBYTE(b));
}
void vm_push_hword_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS * 2)
// TODO: Error (reg is not a valid hword register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// Interpret each word based register as 2 hword registers
word ind = reg / 2;
word nth_hword = reg % 2;
word reg_ptr = vm->registers.reg[ind];
hword hw = WORD_NTH_HWORD(reg_ptr, nth_hword);
vm_push_hword(vm, DHWORD(hw));
}
void vm_push_word_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid word register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm_push_word(vm, DWORD(vm->registers.reg[reg]));
}
data_t vm_mov_byte(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid byte register)
return DBYTE(0);
else if (vm->stack.ptr == 0)
// TODO: Error (STACK UNDERFLOW)
return DBYTE(0);
data_t ret = vm_pop_byte(vm);
word *reg_ptr = &vm->registers.reg[reg / 8];
*reg_ptr = (*reg_ptr) | ((word)ret.as_word) << ((reg % 8) * 8);
return ret;
}
data_t vm_mov_hword(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid hword register)
return DHWORD(0);
else if (vm->stack.ptr < sizeof(f64))
// TODO: Error (STACK UNDERFLOW)
return DHWORD(0);
data_t ret = vm_pop_hword(vm);
word *reg_ptr = &vm->registers.reg[reg / 2];
*reg_ptr = (*reg_ptr) | ((word)ret.as_word) << ((reg % 2) * 2);
return ret;
}
data_t vm_mov_word(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid word register)
return DWORD(0);
else if (vm->stack.ptr < sizeof(word))
// TODO: Error (STACK UNDERFLOW)
return DWORD(0);
data_t ret = vm_pop_word(vm);
vm->registers.reg[reg] = ret.as_word;
return ret;
}
data_t vm_pop_byte(vm_t *vm)
{
if (vm->stack.ptr == 0)
// TODO: Error STACK_UNDERFLOW
return DBYTE(0);
return DBYTE(vm->stack.data[--vm->stack.ptr]);
}
data_t vm_pop_hword(vm_t *vm)
{
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DHWORD(0);
hword h = 0;
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
data_t b = vm_pop_byte(vm);
h = h | ((word)(b.as_byte) << (i * 8));
}
return DWORD(h);
}
data_t vm_pop_word(vm_t *vm)
{
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DWORD(0);
word w = 0;
for (size_t i = 0; i < WORD_SIZE; ++i)
{
data_t b = vm_pop_byte(vm);
w = w | ((word)(b.as_byte) << (i * 8));
}
return DWORD(w);
}
|