(2022)-deleted puzzle files
I think I did this by accident, check out https://git.aryadevchavali.com/advent-of-code/ for my actual advent of code runs.
This commit is contained in:
@@ -1,26 +0,0 @@
|
||||
(defvar input (uiop:read-file-string "2022/1-input"))
|
||||
(defvar *sep (format nil "~%~%"))
|
||||
|
||||
(defun get-lists (input)
|
||||
(let ((pos (search *sep input)))
|
||||
(with-input-from-string (s (subseq input 0 pos))
|
||||
(let ((converted
|
||||
(loop
|
||||
for line = (read-line s nil nil)
|
||||
while line
|
||||
collect (parse-integer line))))
|
||||
(if (null pos)
|
||||
(list converted)
|
||||
(cons converted
|
||||
(get-lists (subseq input (+ pos 2)))))))))
|
||||
|
||||
(defvar sums (sort (mapcar (lambda (lst) (reduce #'+ lst)) (get-lists input)) #'>))
|
||||
|
||||
;; First challenge
|
||||
(format t "Top snacks: ~a" (car sums))
|
||||
|
||||
;; Second challenge
|
||||
(let ((first (car sums))
|
||||
(second (car (cdr sums)))
|
||||
(third (car (cdr (cdr sums)))))
|
||||
(format t "~a,~a,~a:>~a" first second third (+ first second third)))
|
||||
@@ -1,54 +0,0 @@
|
||||
(defvar input (uiop:read-file-string "2022/2-input"))
|
||||
;; Each newline represents a new round, which we should parse on the go
|
||||
|
||||
(defun sensible-convert-input (str)
|
||||
(cond
|
||||
((or (string= str "X") (string= str "A")) 0)
|
||||
((or (string= str "Y") (string= str "B")) 1)
|
||||
((or (string= str "Z") (string= str "C")) 2)))
|
||||
|
||||
;; Round 1
|
||||
(defvar rounds
|
||||
(with-input-from-string (stream input)
|
||||
(loop
|
||||
for strategy = (read-line stream nil)
|
||||
until (null strategy)
|
||||
collect
|
||||
(let ((opponent (subseq strategy 0 1))
|
||||
(yours (subseq strategy 2 3)))
|
||||
(list (sensible-convert-input opponent) (sensible-convert-input yours))))))
|
||||
|
||||
(loop
|
||||
for round in rounds
|
||||
until (null round)
|
||||
sum
|
||||
(destructuring-bind (opp you) round
|
||||
(+
|
||||
1 you ;; base score
|
||||
(cond ; outcome score
|
||||
((eq you opp) 3)
|
||||
((eq (mod (+ 1 opp) 3) you) 6)
|
||||
(t 0)))))
|
||||
|
||||
;; Round 2.
|
||||
|
||||
;; We can still use the same rounds data as previously, just
|
||||
;; reinterpret it in when doing the sum.
|
||||
|
||||
(defun get-correct-choice (opponent outcome)
|
||||
(case outcome
|
||||
(0 (mod (- opponent 1) 3))
|
||||
(1 opp)
|
||||
(2 (mod (+ 1 opponent) 3))
|
||||
(t 0)))
|
||||
|
||||
(loop for round in rounds
|
||||
sum
|
||||
(destructuring-bind (opp you) round
|
||||
(let ((choice (get-correct-choice opp you)))
|
||||
(+ 1 choice
|
||||
(case you ;; outcome -> score
|
||||
(0 0)
|
||||
(1 3)
|
||||
(2 6)
|
||||
(t 0))))))
|
||||
@@ -1,67 +0,0 @@
|
||||
(defvar input (uiop:read-file-string "2022/3-input"))
|
||||
|
||||
(defun split-string-in-two (s)
|
||||
(let ((len (length s)))
|
||||
(list (subseq s 0 (/ len 2)) (subseq s (/ len 2)))))
|
||||
|
||||
(defvar inputs (with-input-from-string (s input)
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect (split-string-in-two line))))
|
||||
|
||||
(defun string-to-clist (str)
|
||||
(loop for char across str collect char))
|
||||
|
||||
(defun common-types (s1 s2)
|
||||
(car (intersection
|
||||
(string-to-clist s1)
|
||||
(string-to-clist s2))))
|
||||
|
||||
(defvar shared (mapcar (lambda (x)
|
||||
(destructuring-bind (s1 s2) x
|
||||
(common-types s1 s2)))
|
||||
inputs))
|
||||
|
||||
(defun priority-map (c)
|
||||
(if (upper-case-p c)
|
||||
(+ 27 (- (char-code c) (char-code #\A)))
|
||||
(+ 1 (- (char-code c) (char-code #\a)))))
|
||||
|
||||
(defvar round-1-answer (reduce #'+ (mapcar #'priority-map shared)))
|
||||
|
||||
;; Round 2
|
||||
|
||||
;; Simple recursive algorithm which produces consecutive groups of 3 elements
|
||||
(defun group-by-3 (lst)
|
||||
(if (null lst)
|
||||
nil
|
||||
(cons
|
||||
(list (car lst) (car (cdr lst)) (car (cdr (cdr lst))))
|
||||
(group-by-3 (cdr (cdr (cdr lst)))))))
|
||||
|
||||
;; Note the use of group-by-3 here
|
||||
(defvar inputs (group-by-3
|
||||
(with-input-from-string (s input)
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect line))))
|
||||
|
||||
;; Extend intersection to three
|
||||
(defun common-types-3 (s1 s2 s3)
|
||||
(car
|
||||
(intersection
|
||||
(string-to-clist s1)
|
||||
(intersection
|
||||
(string-to-clist s2)
|
||||
(string-to-clist s3)))))
|
||||
|
||||
;; Extend the destructuring bind and use of common-types-3
|
||||
(defvar shared (mapcar (lambda (x)
|
||||
(destructuring-bind (s1 s2 s3) x
|
||||
(common-types-3 s1 s2 s3)))
|
||||
inputs))
|
||||
|
||||
;; Same as before
|
||||
(defvar round-2-answer (reduce #'+ (mapcar #'priority-map shared)))
|
||||
@@ -1,59 +0,0 @@
|
||||
;; Example input: a-b,c-d which denotes [a,b] and [c,d]
|
||||
|
||||
;; We want to find if [c,d] < [a,b] or vice versa (complete inclusion)
|
||||
;; and since we're working with integers, it's simply checking if the
|
||||
;; bounds are included i.e. c in [a,b] and d in [a,b]
|
||||
|
||||
(defvar input (uiop:read-file-string "2022/4-input"))
|
||||
|
||||
(defun parse-bound (str)
|
||||
"Given STR=\"a-b\" return (a b)"
|
||||
(let* ((sep (search "-" str))
|
||||
(first (subseq str 0 sep))
|
||||
(second (subseq str (+ sep 1))))
|
||||
(list (parse-integer first) (parse-integer second))))
|
||||
|
||||
(defvar completed-parse
|
||||
(with-input-from-string (s input)
|
||||
(loop for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect
|
||||
;; given a-b,c-d we want ((a b) (c d))
|
||||
(let* ((sep (search "," line))
|
||||
(first-bound (subseq line 0 sep))
|
||||
(second-bound (subseq line (+ sep 1))))
|
||||
(list (parse-bound first-bound) (parse-bound second-bound))))))
|
||||
|
||||
(defun complete-inclusion (first-bound second-bound)
|
||||
(destructuring-bind (a b) first-bound
|
||||
(destructuring-bind (c d) second-bound
|
||||
(or
|
||||
(and
|
||||
(>= a c) (<= a d)
|
||||
(>= b c) (<= b d))
|
||||
(and
|
||||
(>= c a) (<= c b)
|
||||
(>= d a) (<= d b))))))
|
||||
|
||||
(defvar round-1-answer (length (remove-if #'null
|
||||
(mapcar (lambda (pair)
|
||||
(destructuring-bind (first second) pair
|
||||
(complete-inclusion first second)))
|
||||
completed-parse))))
|
||||
|
||||
;; Round 2: any overlap at all. Basically just overhaul the inclusion
|
||||
;; function and then do the same answer checking.
|
||||
(defun any-inclusion (first second)
|
||||
(destructuring-bind (a b) first
|
||||
(destructuring-bind (c d) second
|
||||
;; How about doing this through negation? [a,b] does not overlap with [c,d] at all if either b < c or a > d.
|
||||
(not
|
||||
(or
|
||||
(< b c)
|
||||
(> a d))))))
|
||||
|
||||
(defvar round-2-answer (length (remove-if #'null
|
||||
(mapcar (lambda (pair)
|
||||
(destructuring-bind (first second) pair
|
||||
(any-inclusion first second)))
|
||||
completed-parse))))
|
||||
@@ -1,148 +0,0 @@
|
||||
(defvar input (uiop:read-file-string "2022/5-input"))
|
||||
|
||||
;; When we get two newlines, it means the end of the initial state and
|
||||
;; the start of instructions
|
||||
(defvar parse-separator (search (format nil "~%~%") input))
|
||||
(defvar initial-state
|
||||
(with-input-from-string (s (subseq input 0 parse-separator))
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect line)))
|
||||
|
||||
;; the last number, indicating the number of stacks
|
||||
(defparameter n-stacks (let ((str (car (last initial-state))))
|
||||
(parse-integer (subseq str (- (length str) 1)))))
|
||||
|
||||
(defun default-state ()
|
||||
(loop for i from 1 to n-stacks
|
||||
collect nil))
|
||||
|
||||
(defvar state
|
||||
(default-state))
|
||||
|
||||
#|
|
||||
conjecture: the nth stack, if it has an entry, has '[' beginning at index 4n;
|
||||
|
||||
base case: the 0th stack must begin at index 0 (if at all)
|
||||
|
||||
intuition: next stack must start at 0 + 2 (for the stack info) +
|
||||
1 (for whitespace) + 1 so 4.
|
||||
|
||||
inductive hypothesis: for the kth stack [ begins at 4k
|
||||
|
||||
proof of induction claim: from 4k we have the following:
|
||||
4k+1: symbol
|
||||
4k+2: ]
|
||||
4k+3: whitespace
|
||||
4k+4: data for the (k+1 stack)
|
||||
|
||||
Immediately 4k+4 = 4(k+1) so by principle of induction we have the
|
||||
conjecture. QED.
|
||||
|
||||
This gives us all the information we need to make a parser: check
|
||||
every position and see if it has a [ char. If so then parse the data
|
||||
and insert into the index/4th stack!|#
|
||||
|
||||
(defun parse-initial-state ()
|
||||
(loop
|
||||
;; don't want to parse the last line
|
||||
for j in (remove (car (last initial-state)) initial-state)
|
||||
do
|
||||
(loop
|
||||
for i from 0
|
||||
for c across j
|
||||
do
|
||||
(if (char= c #\[)
|
||||
(let ((ind (/ i 4))
|
||||
(sym (subseq j (+ i 1) (+ i 2))))
|
||||
(setf (nth ind state) (append (nth ind state) (list sym))))))))
|
||||
|
||||
|
||||
;; Now we have the initial memory layout, we need to parse program code.
|
||||
|
||||
;; + 2 because two newlines
|
||||
(defvar instructions-str (subseq input (+ 2 parse-separator)))
|
||||
|
||||
#| Each command is of the following: move ~n from ~a to ~b.
|
||||
|
||||
~n is some natural number of crates, ~a is the stack from which we
|
||||
are taking them and ~b is the stack we are adding them to. Let's
|
||||
define this operation first! |#
|
||||
|
||||
(defun move-crates (n a b)
|
||||
"Take N number of crates from stack at position A to stack at position B"
|
||||
(let ((stack-a (nth a state))
|
||||
(stack-b (nth b state)))
|
||||
(if (= n 0)
|
||||
nil
|
||||
(progn
|
||||
;; Pop the first element off the stack
|
||||
(setf (nth a state) (cdr stack-a))
|
||||
;; Then cons that onto b
|
||||
(setf (nth b state) (cons (car stack-a) stack-b))
|
||||
;; Recur
|
||||
(move-crates (- n 1) a b)))))
|
||||
|
||||
(defun parse-instruction-str (instruction)
|
||||
"Given INSTRUCTION of form \"move n from a to b\", return (n (a - 1) (b - 1))"
|
||||
(let ((first (search "move " instruction))
|
||||
(second (search "from " instruction))
|
||||
(third (search "to " instruction)))
|
||||
(list
|
||||
(parse-integer (subseq instruction (+ 5 first) (- second 1)))
|
||||
;; Input assumes crates start at 1, but we need it to start at 0
|
||||
(- (parse-integer (subseq instruction (+ 5 second) (- third 1))) 1)
|
||||
(- (parse-integer (subseq instruction (+ 3 third))) 1))))
|
||||
|
||||
(defun perform-instructions (instructions)
|
||||
(with-input-from-string (s instructions)
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect
|
||||
;; Parse each instruction then move the crates!
|
||||
(destructuring-bind (n a b) (parse-instruction-str line)
|
||||
(move-crates n a b)))))
|
||||
|
||||
(defun first-round ()
|
||||
(setq state (default-state))
|
||||
(parse-initial-state)
|
||||
(perform-instructions instructions-str)
|
||||
(let ((ret (mapcar #'car state)))
|
||||
(setq state (default-state))
|
||||
(reduce (lambda (s1 s2) (concatenate 'string s1 s2)) ret)))
|
||||
|
||||
;; Round 2 is pretty simple: the move-crates algorithm is overhauled
|
||||
;; to keep movements "in-order". Thankfully I already implemented
|
||||
;; this by accident when implementing move-crates, so easy!
|
||||
|
||||
(defun move-crates-2 (n a b)
|
||||
(let ((stack-a (nth a state))
|
||||
(stack-b (nth b state)))
|
||||
(setf (nth b state)
|
||||
(append (loop for i from 1 to n
|
||||
for j in stack-a
|
||||
collect j)
|
||||
stack-b))
|
||||
(dotimes (i n)
|
||||
(setf stack-a (cdr stack-a)))
|
||||
(setf (nth a state) stack-a)))
|
||||
|
||||
(defun perform-instructions-2 (instructions)
|
||||
(with-input-from-string (s instructions)
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect
|
||||
;; Parse each instruction then move the crates!
|
||||
(destructuring-bind (n a b) (parse-instruction-str line)
|
||||
(move-crates-2 n a b)))))
|
||||
|
||||
(defun second-round ()
|
||||
(setq state (default-state))
|
||||
(parse-initial-state)
|
||||
(perform-instructions-2 instructions-str)
|
||||
(let ((ret (mapcar #'car state)))
|
||||
(setq state (default-state))
|
||||
(reduce (lambda (s1 s2) (concatenate 'string s1 s2)) ret)))
|
||||
Reference in New Issue
Block a user