(2022>puzzle-5)+solution for puzzle-5
Wow, quite involved and definitely cleanable but goddamn so much fun.
This commit is contained in:
148
2022/puzzle-5.lisp
Normal file
148
2022/puzzle-5.lisp
Normal file
@@ -0,0 +1,148 @@
|
||||
(defvar input (uiop:read-file-string "2022/5-input"))
|
||||
|
||||
;; When we get two newlines, it means the end of the initial state and
|
||||
;; the start of instructions
|
||||
(defvar parse-separator (search (format nil "~%~%") input))
|
||||
(defvar initial-state
|
||||
(with-input-from-string (s (subseq input 0 parse-separator))
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect line)))
|
||||
|
||||
;; the last number, indicating the number of stacks
|
||||
(defparameter n-stacks (let ((str (car (last initial-state))))
|
||||
(parse-integer (subseq str (- (length str) 1)))))
|
||||
|
||||
(defun default-state ()
|
||||
(loop for i from 1 to n-stacks
|
||||
collect nil))
|
||||
|
||||
(defvar state
|
||||
(default-state))
|
||||
|
||||
#|
|
||||
conjecture: the nth stack, if it has an entry, has '[' beginning at index 4n;
|
||||
|
||||
base case: the 0th stack must begin at index 0 (if at all)
|
||||
|
||||
intuition: next stack must start at 0 + 2 (for the stack info) +
|
||||
1 (for whitespace) + 1 so 4.
|
||||
|
||||
inductive hypothesis: for the kth stack [ begins at 4k
|
||||
|
||||
proof of induction claim: from 4k we have the following:
|
||||
4k+1: symbol
|
||||
4k+2: ]
|
||||
4k+3: whitespace
|
||||
4k+4: data for the (k+1 stack)
|
||||
|
||||
Immediately 4k+4 = 4(k+1) so by principle of induction we have the
|
||||
conjecture. QED.
|
||||
|
||||
This gives us all the information we need to make a parser: check
|
||||
every position and see if it has a [ char. If so then parse the data
|
||||
and insert into the index/4th stack!|#
|
||||
|
||||
(defun parse-initial-state ()
|
||||
(loop
|
||||
;; don't want to parse the last line
|
||||
for j in (remove (car (last initial-state)) initial-state)
|
||||
do
|
||||
(loop
|
||||
for i from 0
|
||||
for c across j
|
||||
do
|
||||
(if (char= c #\[)
|
||||
(let ((ind (/ i 4))
|
||||
(sym (subseq j (+ i 1) (+ i 2))))
|
||||
(setf (nth ind state) (append (nth ind state) (list sym))))))))
|
||||
|
||||
|
||||
;; Now we have the initial memory layout, we need to parse program code.
|
||||
|
||||
;; + 2 because two newlines
|
||||
(defvar instructions-str (subseq input (+ 2 parse-separator)))
|
||||
|
||||
#| Each command is of the following: move ~n from ~a to ~b.
|
||||
|
||||
~n is some natural number of crates, ~a is the stack from which we
|
||||
are taking them and ~b is the stack we are adding them to. Let's
|
||||
define this operation first! |#
|
||||
|
||||
(defun move-crates (n a b)
|
||||
"Take N number of crates from stack at position A to stack at position B"
|
||||
(let ((stack-a (nth a state))
|
||||
(stack-b (nth b state)))
|
||||
(if (= n 0)
|
||||
nil
|
||||
(progn
|
||||
;; Pop the first element off the stack
|
||||
(setf (nth a state) (cdr stack-a))
|
||||
;; Then cons that onto b
|
||||
(setf (nth b state) (cons (car stack-a) stack-b))
|
||||
;; Recur
|
||||
(move-crates (- n 1) a b)))))
|
||||
|
||||
(defun parse-instruction-str (instruction)
|
||||
"Given INSTRUCTION of form \"move n from a to b\", return (n (a - 1) (b - 1))"
|
||||
(let ((first (search "move " instruction))
|
||||
(second (search "from " instruction))
|
||||
(third (search "to " instruction)))
|
||||
(list
|
||||
(parse-integer (subseq instruction (+ 5 first) (- second 1)))
|
||||
;; Input assumes crates start at 1, but we need it to start at 0
|
||||
(- (parse-integer (subseq instruction (+ 5 second) (- third 1))) 1)
|
||||
(- (parse-integer (subseq instruction (+ 3 third))) 1))))
|
||||
|
||||
(defun perform-instructions (instructions)
|
||||
(with-input-from-string (s instructions)
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect
|
||||
;; Parse each instruction then move the crates!
|
||||
(destructuring-bind (n a b) (parse-instruction-str line)
|
||||
(move-crates n a b)))))
|
||||
|
||||
(defun first-round ()
|
||||
(setq state (default-state))
|
||||
(parse-initial-state)
|
||||
(perform-instructions instructions-str)
|
||||
(let ((ret (mapcar #'car state)))
|
||||
(setq state (default-state))
|
||||
(reduce (lambda (s1 s2) (concatenate 'string s1 s2)) ret)))
|
||||
|
||||
;; Round 2 is pretty simple: the move-crates algorithm is overhauled
|
||||
;; to keep movements "in-order". Thankfully I already implemented
|
||||
;; this by accident when implementing move-crates, so easy!
|
||||
|
||||
(defun move-crates-2 (n a b)
|
||||
(let ((stack-a (nth a state))
|
||||
(stack-b (nth b state)))
|
||||
(setf (nth b state)
|
||||
(append (loop for i from 1 to n
|
||||
for j in stack-a
|
||||
collect j)
|
||||
stack-b))
|
||||
(dotimes (i n)
|
||||
(setf stack-a (cdr stack-a)))
|
||||
(setf (nth a state) stack-a)))
|
||||
|
||||
(defun perform-instructions-2 (instructions)
|
||||
(with-input-from-string (s instructions)
|
||||
(loop
|
||||
for line = (read-line s nil)
|
||||
until (null line)
|
||||
collect
|
||||
;; Parse each instruction then move the crates!
|
||||
(destructuring-bind (n a b) (parse-instruction-str line)
|
||||
(move-crates-2 n a b)))))
|
||||
|
||||
(defun second-round ()
|
||||
(setq state (default-state))
|
||||
(parse-initial-state)
|
||||
(perform-instructions-2 instructions-str)
|
||||
(let ((ret (mapcar #'car state)))
|
||||
(setq state (default-state))
|
||||
(reduce (lambda (s1 s2) (concatenate 'string s1 s2)) ret)))
|
||||
Reference in New Issue
Block a user