1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/* main.c
* Created: 2023-08-25
* Author: Aryadev Chavali
* Description: Entry point of program
*/
#include <malloc.h>
#include <stdbool.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <raylib.h>
#include <raymath.h>
#include "./lib.h"
struct StepArg
{
state_t *state;
size_t x_min, x_max, y_min, y_max;
};
pthread_mutex_t mutex;
void step(struct StepArg arg)
{
state_t *state = arg.state;
for (size_t i = arg.x_min; i < arg.x_max; ++i)
for (size_t j = arg.y_min; j < arg.y_max; ++j)
if (state->data[(i * state->dwidth) + j] >= 4)
{
pthread_mutex_lock(&mutex);
uint64_t *references[] = {
(j == 0) ? NULL : &state->data[((i)*state->dwidth) + j - 1],
(i == state->dwidth - 1)
? NULL
: &state->data[((i + 1) * state->dwidth) + j],
(j == state->dwidth - 1)
? NULL
: &state->data[(i * state->dwidth) + j + 1],
(i == 0) ? NULL : &state->data[((i - 1) * state->dwidth) + j]};
for (size_t k = 0; k < 4; ++k)
if (references[k])
*references[k] += state->data[(i * state->dwidth) + j] / 4;
state->data[(i * state->dwidth) + j] %= 4;
pthread_mutex_unlock(&mutex);
}
}
void *compute_thread(void *input)
{
struct StepArg *arg = input;
while (arg->state->thread_alive)
step(*arg);
return NULL;
}
bool completed_avalanche(state_t *state)
{
for (size_t i = 0; i < state->dwidth; ++i)
for (size_t j = 0; j < state->dwidth; ++j)
if (state->data[(i * state->dwidth) + j] >= 4)
return false;
return true;
}
int main(int argc, char *argv[])
{
// Setup "default" state
state_t state = {NULL, 512, 512, 0, true, pow(2, 16)};
state.data = calloc(state.dwidth * state.dwidth, sizeof(*state.data));
state.multiplier = state.window_len / state.dwidth;
state.data[(state.dwidth * state.dwidth / 2) + (state.dwidth / 2)] =
state.payload;
const float zoom = 0.125f;
Camera2D camera = {0};
camera.zoom = 1.0f;
// Initialise mutex for threads to use
pthread_mutex_init(&mutex, NULL);
// Setup quadrants (for threads)
struct StepArg a = {&state, 0, state.dwidth / 2, 0, state.dwidth / 2};
struct StepArg b = {&state, 0, state.dwidth / 2, state.dwidth / 2,
state.dwidth};
struct StepArg c = {&state, state.dwidth / 2, state.dwidth, 0,
state.dwidth / 2};
struct StepArg d = {&state, state.dwidth / 2, state.dwidth, state.dwidth / 2,
state.dwidth};
// Setup threads
pthread_t thread_a, thread_b, thread_c, thread_d;
pthread_create(&thread_a, NULL, &compute_thread, &a);
pthread_create(&thread_b, NULL, &compute_thread, &b);
pthread_create(&thread_c, NULL, &compute_thread, &c);
pthread_create(&thread_d, NULL, &compute_thread, &d);
InitWindow(state.window_len, state.window_len, "Abelian sand pile");
SetTargetFPS(60);
const int DELTA = 100;
bool done = false;
for (uint64_t ticks = 0, prev_ticks = 0; !WindowShouldClose(); ++ticks)
{
if (IsKeyPressed(KEY_UP) || IsKeyDown(KEY_UP))
{
Vector2 centre = {state.window_len / 2, state.window_len / 2};
Vector2 world_pos = GetScreenToWorld2D(centre, camera);
camera.offset = centre;
camera.target = world_pos;
camera.zoom += zoom;
if (camera.zoom < zoom)
camera.zoom = zoom;
}
if (IsKeyPressed(KEY_DOWN) || IsKeyDown(KEY_DOWN))
{
Vector2 centre = {state.window_len / 2, state.window_len / 2};
Vector2 world_pos = GetScreenToWorld2D(centre, camera);
camera.offset = centre;
camera.target = world_pos;
camera.zoom -= zoom;
if (camera.zoom < zoom)
camera.zoom = zoom;
}
if (ticks - prev_ticks > DELTA && !done)
{
printf("Checking if avalanche is complete!\n");
if (completed_avalanche(&state))
{
state.thread_alive = false;
pthread_join(thread_a, NULL);
pthread_join(thread_b, NULL);
pthread_join(thread_c, NULL);
pthread_join(thread_d, NULL);
done = true;
}
prev_ticks = ticks;
}
if (IsMouseButtonDown(MOUSE_BUTTON_LEFT))
{
Vector2 delta = Vector2Scale(GetMouseDelta(), -1.0f / camera.zoom);
camera.target = Vector2Add(camera.target, delta);
}
BeginDrawing();
ClearBackground(BLACK);
BeginMode2D(camera);
for (size_t i = 0; i < state.dwidth; ++i)
for (size_t j = 0; j < state.dwidth; ++j)
{
Color c = {0};
uint64_t sandpile = state.data[(i * state.dwidth) + j];
if (sandpile == 0)
c = BLACK;
else if (sandpile == 1)
c = MAGENTA;
else if (sandpile == 2)
c = RED;
else if (sandpile == 3)
c = BLUE;
DrawRectangle(i * state.multiplier, j * state.multiplier,
state.multiplier, state.multiplier, c);
}
EndMode2D();
EndDrawing();
}
if (state.thread_alive)
{
state.thread_alive = false;
pthread_join(thread_a, NULL);
pthread_join(thread_b, NULL);
pthread_join(thread_c, NULL);
pthread_join(thread_d, NULL);
}
CloseWindow();
write_to_png(&state, "data.png");
free(state.data);
return 0;
}
|