aboutsummaryrefslogtreecommitdiff
path: root/vm/runtime.c
blob: 421256ac7a2d4dd48cf7fed10faba1983a8d1e84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/* Copyright (C) 2023 Aryadev Chavali

 * You may distribute and modify this code under the terms of the
 * GPLv2 license.  You should have received a copy of the GPLv2
 * license with this file.  If not, please write to:
 * aryadev@aryadevchavali.com.

 * Created: 2023-10-15
 * Author: Aryadev Chavali
 * Description: Virtual machine implementation
 */

#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "./runtime.h"

const char *err_as_cstr(err_t err)
{
  switch (err)
  {
  case ERR_OK:
    return "OK";
    break;
  case ERR_STACK_UNDERFLOW:
    return "STACK_UNDERFLOW";
    break;
  case ERR_STACK_OVERFLOW:
    return "STACK_OVERFLOW";
    break;
  case ERR_INVALID_OPCODE:
    return "INVALID_OPCODE";
    break;
  case ERR_INVALID_REGISTER_BYTE:
    return "INVALID_REGISTER_BYTE";
    break;
  case ERR_INVALID_REGISTER_HWORD:
    return "INVALID_REGISTER_HWORD";
    break;
  case ERR_INVALID_REGISTER_WORD:
    return "INVALID_REGISTER_WORD";
    break;
  case ERR_INVALID_PROGRAM_ADDRESS:
    return "INVALID_PROGRAM_ADDRESS";
  case ERR_INVALID_PAGE_ADDRESS:
    return "INVALID_PAGE_ADDRESS";
  case ERR_OUT_OF_BOUNDS:
    return "OUT_OF_BOUNDS";
  case ERR_END_OF_PROGRAM:
    return "END_OF_PROGRAM";
    break;
  default:
    return "";
  }
}

err_t vm_execute(vm_t *vm)
{
  static_assert(NUMBER_OF_OPCODES == 90, "vm_execute: Out of date");
  struct Program *prog = &vm->program;
  if (prog->ptr >= prog->max)
    return ERR_END_OF_PROGRAM;
  inst_t instruction = prog->instructions[prog->ptr];

  if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
  {
    prog->ptr++;
    return PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
  }
  else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_DUP) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_MSET) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_MGET))
  {
    prog->ptr++;
    return WORD_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
  }
  else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP))
  {
    // NOTE: We use the first register to hold the result of this pop
    data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP);
    prog->ptr++;
    switch (type)
    {
    case DATA_TYPE_NIL:
      break;
    case DATA_TYPE_BYTE:
      return vm_mov_byte(vm, 0);
      break;
    case DATA_TYPE_HWORD:
      return vm_mov_hword(vm, 0);
      break;
    case DATA_TYPE_WORD:
      return vm_mov_word(vm, 0);
      break;
    }
    return ERR_OK;
  }
  else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_OR) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_AND) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_XOR) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_EQ) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_LT) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_LTE) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_GT) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_GTE) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_PLUS) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_MULT) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_MSET_STACK) ||
           OPCODE_IS_TYPE(instruction.opcode, OP_MGET_STACK) ||
           instruction.opcode == OP_MDELETE || instruction.opcode == OP_MSIZE)
  {
    prog->ptr++;
    return STACK_ROUTINES[instruction.opcode](vm);
  }
  else if (instruction.opcode == OP_JUMP_ABS)
    return vm_jump(vm, instruction.operand.as_word);
  else if (instruction.opcode == OP_JUMP_STACK)
  {
    // Set prog->ptr to the word on top of the stack
    data_t ret = {0};
    err_t err  = vm_pop_word(vm, &ret);
    if (err)
      return err;
    return vm_jump(vm, ret.as_word);
  }
  else if (instruction.opcode == OP_JUMP_REGISTER)
  {
    if (instruction.operand.as_word >= vm->registers.available)
      return ERR_INVALID_REGISTER_WORD;
    word addr = vm->registers.data[instruction.operand.as_word];
    return vm_jump(vm, addr);
  }
  else if (OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF))
  {
    data_t datum = {0};
    err_t err    = ERR_OK;
    if (instruction.opcode == OP_JUMP_IF_BYTE)
      err = vm_pop_byte(vm, &datum);
    else if (instruction.opcode == OP_JUMP_IF_HWORD)
      err = vm_pop_hword(vm, &datum);
    else if (instruction.opcode == OP_JUMP_IF_WORD)
      err = vm_pop_word(vm, &datum);

    if (err)
      return err;

    // If datum != 0 then jump, else go to the next instruction
    if (datum.as_word != 0)
      return vm_jump(vm, instruction.operand.as_word);
    else
      ++prog->ptr;
  }
  else if (OPCODE_IS_TYPE(instruction.opcode, OP_PRINT))
  {
    data_t datum = {0};
    enum
    {
      TYPE_BYTE,
      TYPE_CHAR,
      TYPE_INT,
      TYPE_HWORD,
      TYPE_LONG,
      TYPE_WORD
    } print_type;
    err_t err = ERR_OK;
    if (instruction.opcode == OP_PRINT_BYTE ||
        instruction.opcode == OP_PRINT_CHAR)
    {
      print_type = instruction.opcode == OP_PRINT_BYTE ? TYPE_BYTE : TYPE_CHAR;
      err        = vm_pop_byte(vm, &datum);
    }
    else if (instruction.opcode == OP_PRINT_HWORD ||
             instruction.opcode == OP_PRINT_INT)
    {
      print_type = instruction.opcode == OP_PRINT_HWORD ? TYPE_HWORD : TYPE_INT;
      err        = vm_pop_hword(vm, &datum);
    }
    else if (instruction.opcode == OP_PRINT_WORD ||
             instruction.opcode == OP_PRINT_LONG)
    {
      print_type = instruction.opcode == OP_PRINT_WORD ? TYPE_WORD : TYPE_LONG;
      err        = vm_pop_word(vm, &datum);
    }

    if (err)
      return err;

    switch (print_type)
    {
    case TYPE_CHAR: {
      printf("%c", datum.as_char);
      break;
    }
    case TYPE_BYTE:
      printf("0x%x", datum.as_byte);
      break;
    case TYPE_INT: {
      printf(
#if PRINT_HEX == 1
          "0x%X",
#else
          "%" PRId32,
#endif
          datum.as_int);
      break;
    }
    case TYPE_HWORD:
      printf(
#if PRINT_HEX == 1
          "0x%X",
#else
          "%" PRIu32,
#endif
          datum.as_hword);
      break;
    case TYPE_LONG: {
      printf(
#if PRINT_HEX == 1
          "0x%dX",
#else
          "%" PRId64,
#endif
          datum.as_long);
      break;
    }
    case TYPE_WORD:
      printf(
#if PRINT_HEX == 1
          "0x%lX",
#else
          "%" PRIu64,
#endif
          datum.as_word);
      break;
    }

    prog->ptr++;
  }
  else if (instruction.opcode == OP_HALT)
  {
    // Do nothing here.  Should be caught by callers of vm_execute
  }
  else
    return ERR_INVALID_OPCODE;
  return ERR_OK;
}

err_t vm_execute_all(vm_t *vm)
{
  struct Program *program = &vm->program;
  err_t err               = ERR_OK;
#if VERBOSE >= 1
  size_t cycles = 0;
#endif
#if VERBOSE >= 2
  registers_t prev_registers = vm->registers;
  size_t prev_sptr           = 0;
  size_t prev_pages          = 0;
#endif
  while (program->instructions[program->ptr].opcode != OP_HALT &&
         program->ptr < program->max)
  {
#if VERBOSE >= 2
    fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles);
    fputs(
        "----------------------------------------------------------------------"
        "----------\n",
        stdout);
    vm_print_program(vm, stdout);
    fputs(
        "----------------------------------------------------------------------"
        "----------\n",
        stdout);
    if (prev_pages != vm->heap.pages)
    {
      vm_print_heap(vm, stdout);
      prev_pages = vm->heap.pages;
      fputs("------------------------------------------------------------------"
            "----"
            "----------\n",
            stdout);
    }
    if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0)
    {
      vm_print_registers(vm, stdout);
      prev_registers = vm->registers;
      fputs("------------------------------------------------------------------"
            "----"
            "----------\n",
            stdout);
    }
    if (prev_sptr != vm->stack.ptr)
    {
      vm_print_stack(vm, stdout);
      prev_sptr = vm->stack.ptr;
      fputs("------------------------------------------------------------------"
            "----"
            "----------\n",
            stdout);
    }
#endif
#if VERBOSE >= 1
    ++cycles;
#endif
    err = vm_execute(vm);
    if (err)
      return err;
  }

#if VERBOSE >= 1
  fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n",
          TERM_YELLOW, TERM_RESET, cycles);
  vm_print_all(vm, stdout);
#endif
  return err;
}

void vm_load_stack(vm_t *vm, byte *bytes, size_t size)
{
  vm->stack.data = bytes;
  vm->stack.max  = size;
  vm->stack.ptr  = 0;
}

void vm_load_program(vm_t *vm, inst_t *instructions, size_t size)
{
  vm->program.instructions = instructions;
  vm->program.max          = size;
  vm->program.ptr          = 0;
}

void vm_load_registers(vm_t *vm, registers_t registers)
{
  vm->registers = registers;
}

void vm_load_heap(vm_t *vm, heap_t heap)
{
  vm->heap = heap;
}

void vm_stop(vm_t *vm)
{
  free(vm->registers.data);
  free(vm->program.instructions);
  free(vm->stack.data);
  heap_stop(&vm->heap);

  vm->registers = (registers_t){0};
  vm->program   = (struct Program){0};
  vm->stack     = (struct Stack){0};
  vm->heap      = (heap_t){0};
}

void vm_print_registers(vm_t *vm, FILE *fp)
{
  registers_t reg = vm->registers;
  fprintf(
      fp,
      "Registers.used = %luB/%luH/%luW\nRegisters.available = %luB/%luH/%luW\n",
      vm->registers.used, vm->registers.used / HWORD_SIZE,
      vm->registers.used / WORD_SIZE, vm->registers.available,
      vm->registers.available / HWORD_SIZE,
      vm->registers.available / WORD_SIZE);
  fprintf(fp, "Registers.reg = [");
  for (size_t i = 0; i < (reg.used / WORD_SIZE); ++i)
  {
    fprintf(fp, "{%lu:%lX}", i, VM_NTH_REGISTER(reg, i));
    if (i != reg.used - 1)
      fprintf(fp, ", ");
  }
  fprintf(fp, "]\n");
}

void vm_print_stack(vm_t *vm, FILE *fp)
{
  struct Stack stack = vm->stack;
  fprintf(fp, "Stack.max  = %lu\nStack.ptr  = %lu\nStack.data = [", stack.max,
          stack.ptr);
  if (stack.ptr == 0)
  {
    fprintf(fp, "]\n");
    return;
  }
  printf("\n");
  for (size_t i = stack.ptr; i > 0; --i)
  {
    byte b = stack.data[i - 1];
    fprintf(fp, "\t%lu: %X", stack.ptr - i, b);
    if (i != 1)
      fprintf(fp, ", ");
    fprintf(fp, "\n");
  }
  fprintf(fp, "]\n");
}

void vm_print_program(vm_t *vm, FILE *fp)
{
  struct Program program = vm->program;
  fprintf(fp,
          "Program.max          = %lu\nProgram.ptr          = "
          "%lu\nProgram.instructions = [\n",
          program.max, program.ptr);
  size_t beg = 0;
  if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT)
  {
    fprintf(fp, "\t...\n");
    beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT;
  }
  else
    beg = 0;
  size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max);
  for (size_t i = beg; i < end; ++i)
  {
    fprintf(fp, "\t%lu: ", i);
    inst_print(program.instructions[i], fp);
    if (i == program.ptr)
      fprintf(fp, " <---");
    fprintf(fp, "\n");
  }
  if (end != program.max)
    fprintf(fp, "\t...\n");
  fprintf(fp, "]\n");
}

void vm_print_heap(vm_t *vm, FILE *fp)
{
  heap_t heap = vm->heap;
  fprintf(fp, "Heap.pages = %lu\nHeap.data = [", heap.pages);
  if (heap.pages == 0)
  {
    fprintf(fp, "]\n");
    return;
  }
  page_t *cur = heap.beg;
  fprintf(fp, "\n");
  for (size_t i = 0; i < heap.pages; ++i)
  {
    fprintf(fp, "\tPage[%lu]: ", i);
    if (!cur)
      fprintf(fp, "<NIL>\n");
    else
    {
      fprintf(fp, "{");
      for (size_t j = 0; j < cur->available; ++j)
      {
        fprintf(fp, "%x", cur->data[j]);
        if (j != cur->available - 1)
          fprintf(fp, ", ");
        else if ((j % 8) == 7)
          fprintf(fp, ",\n\t\t");
      }
      fprintf(fp, "}\n");
      cur = cur->next;
    }
  }
  fprintf(fp, "]\n");
}

void vm_print_all(vm_t *vm, FILE *fp)
{
  fputs("----------------------------------------------------------------------"
        "----------\n",
        fp);
  vm_print_program(vm, fp);
  fputs("----------------------------------------------------------------------"
        "----------\n",
        fp);
  vm_print_heap(vm, fp);
  fputs("----------------------------------------------------------------------"
        "----------\n",
        fp);
  vm_print_registers(vm, fp);
  fputs("----------------------------------------------------------------------"
        "----------\n",
        fp);
  vm_print_stack(vm, fp);
  fputs("----------------------------------------------------------------------"
        "----------\n",
        fp);
}

err_t vm_jump(vm_t *vm, word w)
{
  if (w >= vm->program.max)
    return ERR_INVALID_PROGRAM_ADDRESS;
  vm->program.ptr = w;
  return ERR_OK;
}

err_t vm_push_byte(vm_t *vm, data_t b)
{
  if (vm->stack.ptr >= vm->stack.max)
    return ERR_STACK_OVERFLOW;
  vm->stack.data[vm->stack.ptr++] = b.as_byte;
  return ERR_OK;
}

err_t vm_push_hword(vm_t *vm, data_t f)
{
  if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
    return ERR_STACK_OVERFLOW;
  byte bytes[HWORD_SIZE] = {0};
  convert_hword_to_bytes(f.as_hword, bytes);
  for (size_t i = 0; i < HWORD_SIZE; ++i)
  {
    byte b = bytes[HWORD_SIZE - i - 1];
    vm_push_byte(vm, DBYTE(b));
  }
  return ERR_OK;
}

err_t vm_push_word(vm_t *vm, data_t w)
{
  if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
    return ERR_STACK_OVERFLOW;
  byte bytes[WORD_SIZE] = {0};
  convert_word_to_bytes(w.as_word, bytes);
  for (size_t i = 0; i < WORD_SIZE; ++i)
  {
    byte b = bytes[WORD_SIZE - i - 1];
    vm_push_byte(vm, DBYTE(b));
  }
  return ERR_OK;
}

err_t vm_push_byte_register(vm_t *vm, word reg)
{
  if (reg > vm->registers.used)
    return ERR_INVALID_REGISTER_BYTE;

  // Interpret each word based register as 8 byte registers
  byte b = vm->registers.data[reg];

  return vm_push_byte(vm, DBYTE(b));
}

err_t vm_push_hword_register(vm_t *vm, word reg)
{
  if (reg > (vm->registers.used / HWORD_SIZE))
    return ERR_INVALID_REGISTER_HWORD;
  // Interpret the bytes at point reg * HWORD_SIZE as an hword
  hword hw = *(hword *)(vm->registers.data + (reg * HWORD_SIZE));
  return vm_push_hword(vm, DHWORD(hw));
}

err_t vm_push_word_register(vm_t *vm, word reg)
{
  if (reg > (vm->registers.used / WORD_SIZE))
    return ERR_INVALID_REGISTER_WORD;
  return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg)));
}

err_t vm_mov_byte(vm_t *vm, word reg)
{
  if (reg >= vm->registers.used)
  {
    // Expand capacity
    darr_ensure_capacity(&vm->registers, reg - vm->registers.used);
    vm->registers.used = MAX(vm->registers.used, reg + 1);
  }
  data_t ret = {0};
  err_t err  = vm_pop_byte(vm, &ret);
  if (err)
    return err;
  vm->registers.data[reg] = ret.as_byte;
  return ERR_OK;
}

err_t vm_mov_hword(vm_t *vm, word reg)
{
  if (reg >= (vm->registers.used / HWORD_SIZE))
  {
    // Expand capacity till we can ensure that this is a valid
    // register to use

    // Number of hwords needed ontop of what is allocated:
    const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE));
    // Number of bytes needed ontop of what is allocated
    const size_t diff = (hwords + 1) * HWORD_SIZE;

    darr_ensure_capacity(&vm->registers, diff);
    vm->registers.used = MAX(vm->registers.used, (reg + 1) * HWORD_SIZE);
  }
  data_t ret = {0};
  err_t err  = vm_pop_hword(vm, &ret);
  if (err)
    return err;
  // Here we treat vm->registers as a set of hwords
  hword *hword_ptr = (hword *)(vm->registers.data + (reg * HWORD_SIZE));
  *hword_ptr       = ret.as_hword;
  return ERR_OK;
}

err_t vm_mov_word(vm_t *vm, word reg)
{
  if (reg >= (vm->registers.used / WORD_SIZE))
  {
    // Number of hwords needed ontop of what is allocated:
    const size_t words = (reg - (vm->registers.used / WORD_SIZE));
    // Number of bytes needed ontop of what is allocated
    const size_t diff = (words + 1) * WORD_SIZE;

    darr_ensure_capacity(&vm->registers, diff);
    vm->registers.used = MAX(vm->registers.used, (reg + 1) * WORD_SIZE);
  }
  else if (vm->stack.ptr < sizeof(word))
    return ERR_STACK_UNDERFLOW;
  data_t ret = {0};
  err_t err  = vm_pop_word(vm, &ret);
  if (err)
    return err;
  ((word *)(vm->registers.data))[reg] = ret.as_word;
  return ERR_OK;
}

err_t vm_dup_byte(vm_t *vm, word w)
{
  if (vm->stack.ptr < w + 1)
    return ERR_STACK_UNDERFLOW;
  return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w]));
}

err_t vm_dup_hword(vm_t *vm, word w)
{
  if (vm->stack.ptr < HWORD_SIZE * (w + 1))
    return ERR_STACK_UNDERFLOW;
  byte bytes[HWORD_SIZE] = {0};
  for (size_t i = 0; i < HWORD_SIZE; ++i)
    bytes[HWORD_SIZE - i - 1] =
        vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i];
  return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes)));
}

err_t vm_dup_word(vm_t *vm, word w)
{
  if (vm->stack.ptr < WORD_SIZE * (w + 1))
    return ERR_STACK_UNDERFLOW;
  byte bytes[WORD_SIZE] = {0};
  for (size_t i = 0; i < WORD_SIZE; ++i)
    bytes[WORD_SIZE - i - 1] =
        vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i];
  return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes)));
}

err_t vm_malloc_byte(vm_t *vm, word n)
{
  page_t *page = heap_allocate(&vm->heap, n);
  return vm_push_word(vm, DWORD((word)page));
}

err_t vm_malloc_hword(vm_t *vm, word n)
{
  page_t *page = heap_allocate(&vm->heap, n * HWORD_SIZE);
  return vm_push_word(vm, DWORD((word)page));
}

err_t vm_malloc_word(vm_t *vm, word n)
{
  page_t *page = heap_allocate(&vm->heap, n * WORD_SIZE);
  return vm_push_word(vm, DWORD((word)page));
}

err_t vm_mset_byte(vm_t *vm, word nth)
{
  // Stack layout should be [BYTE, PTR]
  data_t byte = {0};
  err_t err   = vm_pop_byte(vm, &byte);
  if (err)
    return err;
  data_t ptr = {0};
  err        = vm_pop_word(vm, &ptr);
  if (err)
    return err;

  page_t *page = (page_t *)ptr.as_word;
  if (nth >= page->available)
    return ERR_OUT_OF_BOUNDS;
  page->data[nth] = byte.as_byte;

  return ERR_OK;
}

err_t vm_mset_hword(vm_t *vm, word nth)
{
  // Stack layout should be [HWORD, PTR]
  data_t byte = {0};
  err_t err   = vm_pop_hword(vm, &byte);
  if (err)
    return err;
  data_t ptr = {0};
  err        = vm_pop_word(vm, &ptr);
  if (err)
    return err;

  page_t *page = (page_t *)ptr.as_word;
  if (nth >= (page->available / HWORD_SIZE))
    return ERR_OUT_OF_BOUNDS;
  ((hword *)page->data)[nth] = byte.as_hword;

  return ERR_OK;
}

err_t vm_mset_word(vm_t *vm, word nth)
{
  // Stack layout should be [WORD, PTR]
  data_t byte = {0};
  err_t err   = vm_pop_word(vm, &byte);
  if (err)
    return err;
  data_t ptr = {0};
  err        = vm_pop_word(vm, &ptr);
  if (err)
    return err;

  page_t *page = (page_t *)ptr.as_word;
  if (nth >= (page->available / WORD_SIZE))
    return ERR_OUT_OF_BOUNDS;
  ((word *)page->data)[nth] = byte.as_hword;

  return ERR_OK;
}

err_t vm_mget_byte(vm_t *vm, word n)
{
  // Stack layout should be [PTR]
  data_t ptr = {0};
  err_t err  = vm_pop_word(vm, &ptr);
  if (err)
    return err;
  page_t *page = (page_t *)ptr.as_word;
  if (n >= page->available)
    return ERR_OUT_OF_BOUNDS;
  return vm_push_byte(vm, DBYTE(page->data[n]));
}

err_t vm_mget_hword(vm_t *vm, word n)
{
  // Stack layout should be [PTR]
  data_t ptr = {0};
  err_t err  = vm_pop_word(vm, &ptr);
  if (err)
    return err;
  page_t *page = (page_t *)ptr.as_word;
  if (n >= (page->available / HWORD_SIZE))
    return ERR_OUT_OF_BOUNDS;
  return vm_push_byte(vm, DHWORD(((hword *)page->data)[n]));
}

err_t vm_mget_word(vm_t *vm, word n)
{
  // Stack layout should be [PTR]
  data_t ptr = {0};
  err_t err  = vm_pop_word(vm, &ptr);
  if (err)
    return err;
  page_t *page = (page_t *)ptr.as_word;
  if (n >= (page->available / WORD_SIZE))
    return ERR_OUT_OF_BOUNDS;
  return vm_push_byte(vm, DHWORD(((word *)page->data)[n]));
}

err_t vm_pop_byte(vm_t *vm, data_t *ret)
{
  if (vm->stack.ptr == 0)
    return ERR_STACK_UNDERFLOW;
  *ret = DBYTE(vm->stack.data[--vm->stack.ptr]);
  return ERR_OK;
}

err_t vm_pop_hword(vm_t *vm, data_t *ret)
{
  if (vm->stack.ptr < HWORD_SIZE)
    return ERR_STACK_UNDERFLOW;
  byte bytes[HWORD_SIZE] = {0};
  for (size_t i = 0; i < HWORD_SIZE; ++i)
  {
    data_t b = {0};
    vm_pop_byte(vm, &b);
    bytes[i] = b.as_byte;
  }
  *ret = DWORD(convert_bytes_to_hword(bytes));
  return ERR_OK;
}

err_t vm_pop_word(vm_t *vm, data_t *ret)
{
  if (vm->stack.ptr < WORD_SIZE)
    return ERR_STACK_UNDERFLOW;
  byte bytes[WORD_SIZE] = {0};
  for (size_t i = 0; i < WORD_SIZE; ++i)
  {
    data_t b = {0};
    vm_pop_byte(vm, &b);
    bytes[i] = b.as_byte;
  }
  *ret = DWORD(convert_bytes_to_word(bytes));
  return ERR_OK;
}

// TODO: rename this to something more appropriate
#define VM_MEMORY_STACK_CONSTR(ACTION, TYPE)    \
  err_t vm_##ACTION##_stack_##TYPE(vm_t *vm)    \
  {                                             \
    data_t n  = {0};                            \
    err_t err = vm_pop_word(vm, &n);            \
    if (err)                                    \
      return err;                               \
    return vm_##ACTION##_##TYPE(vm, n.as_word); \
  }

VM_MEMORY_STACK_CONSTR(mset, byte)
VM_MEMORY_STACK_CONSTR(mset, hword)
VM_MEMORY_STACK_CONSTR(mset, word)
VM_MEMORY_STACK_CONSTR(mget, byte)
VM_MEMORY_STACK_CONSTR(mget, hword)
VM_MEMORY_STACK_CONSTR(mget, word)

err_t vm_mdelete(vm_t *vm)
{
  data_t ptr = {0};
  err_t err  = vm_pop_word(vm, &ptr);
  if (err)
    return err;
  page_t *page = (page_t *)ptr.as_word;
  bool done    = heap_free_page(&vm->heap, page);
  if (!done)
    return ERR_INVALID_PAGE_ADDRESS;
  return ERR_OK;
}

err_t vm_msize(vm_t *vm)
{
  data_t ptr = {0};
  err_t err  = vm_pop_word(vm, &ptr);
  if (err)
    return err;
  page_t *page = (page_t *)ptr.as_word;
  return vm_push_word(vm, DWORD(page->available));
}

// TODO: rename this to something more appropriate
#define VM_NOT_TYPE(TYPEL, TYPEU)                        \
  err_t vm_not_##TYPEL(vm_t *vm)                         \
  {                                                      \
    data_t a  = {0};                                     \
    err_t err = vm_pop_##TYPEL(vm, &a);                  \
    if (err)                                             \
      return err;                                        \
    return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \
  }

VM_NOT_TYPE(byte, BYTE)
VM_NOT_TYPE(hword, HWORD)
VM_NOT_TYPE(word, WORD)

// TODO: rename this to something more appropriate
#define VM_SAME_TYPE(COMPNAME, COMP, TYPEL, TYPEU)                        \
  err_t vm_##COMPNAME##_##TYPEL(vm_t *vm)                                 \
  {                                                                       \
    data_t a = {0}, b = {0};                                              \
    err_t err = vm_pop_##TYPEL(vm, &a);                                   \
    if (err)                                                              \
      return err;                                                         \
    err = vm_pop_##TYPEL(vm, &b);                                         \
    if (err)                                                              \
      return err;                                                         \
    return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \
  }

// TODO: rename this to something more appropriate
#define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL)           \
  err_t vm_##COMPNAME##_##GETL(vm_t *vm)                          \
  {                                                               \
    data_t a = {0}, b = {0};                                      \
    err_t err = vm_pop_##TYPEL(vm, &a);                           \
    if (err)                                                      \
      return err;                                                 \
    err = vm_pop_##TYPEL(vm, &b);                                 \
    if (err)                                                      \
      return err;                                                 \
    return vm_push_byte(vm, DBYTE(b.as_##GETL COMP a.as_##GETL)); \
  }

VM_SAME_TYPE(or, |, byte, BYTE)
VM_SAME_TYPE(or, |, hword, HWORD)
VM_SAME_TYPE(or, |, word, WORD)
VM_SAME_TYPE(and, &, byte, BYTE)
VM_SAME_TYPE(and, &, hword, HWORD)
VM_SAME_TYPE(and, &, word, WORD)
VM_SAME_TYPE(xor, ^, byte, BYTE)
VM_SAME_TYPE(xor, ^, hword, HWORD)
VM_SAME_TYPE(xor, ^, word, WORD)

VM_SAME_TYPE(plus, +, byte, BYTE)
VM_SAME_TYPE(plus, +, hword, HWORD)
VM_SAME_TYPE(plus, +, word, WORD)

VM_SAME_TYPE(mult, *, byte, BYTE)
VM_SAME_TYPE(mult, *, hword, HWORD)
VM_SAME_TYPE(mult, *, word, WORD)

VM_COMPARATOR_TYPE(eq, ==, byte, byte)
VM_COMPARATOR_TYPE(eq, ==, byte, char)
VM_COMPARATOR_TYPE(eq, ==, hword, hword)
VM_COMPARATOR_TYPE(eq, ==, hword, int)
VM_COMPARATOR_TYPE(eq, ==, word, word)
VM_COMPARATOR_TYPE(eq, ==, word, long)

VM_COMPARATOR_TYPE(lt, <, byte, byte)
VM_COMPARATOR_TYPE(lt, <, byte, char)
VM_COMPARATOR_TYPE(lt, <, hword, hword)
VM_COMPARATOR_TYPE(lt, <, hword, int)
VM_COMPARATOR_TYPE(lt, <, word, word)
VM_COMPARATOR_TYPE(lt, <, word, long)

VM_COMPARATOR_TYPE(lte, <=, byte, byte)
VM_COMPARATOR_TYPE(lte, <=, byte, char)
VM_COMPARATOR_TYPE(lte, <=, hword, hword)
VM_COMPARATOR_TYPE(lte, <=, hword, int)
VM_COMPARATOR_TYPE(lte, <=, word, word)
VM_COMPARATOR_TYPE(lte, <=, word, long)

VM_COMPARATOR_TYPE(gt, >, byte, byte)
VM_COMPARATOR_TYPE(gt, >, byte, char)
VM_COMPARATOR_TYPE(gt, >, hword, hword)
VM_COMPARATOR_TYPE(gt, >, hword, int)
VM_COMPARATOR_TYPE(gt, >, word, word)
VM_COMPARATOR_TYPE(gt, >, word, long)

VM_COMPARATOR_TYPE(gte, >=, byte, byte)
VM_COMPARATOR_TYPE(gte, >=, byte, char)
VM_COMPARATOR_TYPE(gte, >=, hword, hword)
VM_COMPARATOR_TYPE(gte, >=, hword, int)
VM_COMPARATOR_TYPE(gte, >=, word, word)
VM_COMPARATOR_TYPE(gte, >=, word, long)