1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
|
/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./runtime.h"
void vm_execute(vm_t *vm)
{
static_assert(NUMBER_OF_OPCODES == 34, "vm_execute: Out of date");
struct Program *prog = &vm->program;
if (prog->ptr >= prog->max)
// TODO: Error (Went past end of program)
return;
inst_t instruction = prog->instructions[prog->ptr];
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER))
{
PUSH_REG_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP))
{
// NOTE: We use the first register to hold the result of this pop
data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP);
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
vm_mov_byte(vm, 0);
break;
case DATA_TYPE_HWORD:
vm_mov_hword(vm, 0);
break;
case DATA_TYPE_WORD:
vm_mov_word(vm, 0);
break;
}
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV))
{
MOV_ROUTINES[instruction.opcode](vm, instruction.operand.as_byte);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_DUP))
{
DUP_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT))
{
NOT_ROUTINES[instruction.opcode](vm);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_OR))
{
OR_ROUTINES[instruction.opcode](vm);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_AND))
{
AND_ROUTINES[instruction.opcode](vm);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_XOR))
{
XOR_ROUTINES[instruction.opcode](vm);
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_EQ))
{
EQ_ROUTINES[instruction.opcode](vm);
prog->ptr++;
}
else if (instruction.opcode == OP_JUMP_ABS)
{
// Set prog->ptr to the jump point requested
prog->ptr = instruction.operand.as_word;
}
else if (instruction.opcode == OP_JUMP_STACK)
{
// Set prog->ptr to the word on top of the stack
prog->ptr = vm_pop_word(vm).as_word;
}
else if (instruction.opcode == OP_JUMP_REGISTER)
{
if (instruction.operand.as_byte >= 8)
// TODO: Error register is not a valid word register
return;
prog->ptr = vm->registers.reg[instruction.operand.as_byte];
}
else if (instruction.opcode == OP_HALT)
{
// Do nothing here. Should be caught by callers of vm_execute
}
else
{
// TODO: Error (Unknown opcode)
return;
}
}
void vm_execute_all(vm_t *vm)
{
struct Program *program = &vm->program;
#if VERBOSE == 1
struct Registers prev_registers = vm->registers;
size_t cycles = 0;
size_t prev_sptr = 0;
#endif
while (program->instructions[program->ptr].opcode != OP_HALT &&
program->ptr < program->max)
{
#if VERBOSE >= 1
fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
vm_print_program(vm, stdout);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
if (memcmp(prev_registers.reg, vm->registers.reg,
ARR_SIZE(vm->registers.reg)) != 0)
{
vm_print_registers(vm, stdout);
prev_registers = vm->registers;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
if (prev_sptr != vm->stack.ptr)
{
vm_print_stack(vm, stdout);
prev_sptr = vm->stack.ptr;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
++cycles;
#endif
vm_execute(vm);
}
#if VERBOSE >= 1
fprintf(stdout, "[vm_execute_all]: Final VM state(Cycle %lu)\n", cycles);
vm_print_all(vm, stdout);
#endif
}
void vm_load_stack(vm_t *vm, byte *bytes, size_t size)
{
vm->stack.data = bytes;
vm->stack.max = size;
vm->stack.ptr = 0;
}
void vm_load_program(vm_t *vm, inst_t *instructions, size_t size)
{
vm->program.instructions = instructions;
vm->program.max = size;
vm->program.ptr = 0;
}
void vm_print_registers(vm_t *vm, FILE *fp)
{
struct Registers reg = vm->registers;
fprintf(fp, "Registers.reg = [");
for (size_t i = 0; i < VM_REGISTERS; ++i)
{
fprintf(fp, "{%lu:%lX}", i, reg.reg[i]);
if (i != VM_REGISTERS - 1)
fprintf(fp, ", ");
}
fprintf(fp, "]\n");
}
void vm_print_stack(vm_t *vm, FILE *fp)
{
struct Stack stack = vm->stack;
fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max,
stack.ptr);
if (stack.ptr == 0)
{
fprintf(fp, "]\n");
return;
}
printf("\n");
for (size_t i = stack.ptr; i > 0; --i)
{
byte b = stack.data[i - 1];
fprintf(fp, "\t%lu: %X", stack.ptr - i, b);
if (i != 1)
fprintf(fp, ", ");
fprintf(fp, "\n");
}
fprintf(fp, "]\n");
}
void vm_print_program(vm_t *vm, FILE *fp)
{
struct Program program = vm->program;
fprintf(fp,
"Program.max = %lu\nProgram.ptr = "
"%lu\nProgram.instructions = [\n",
program.max, program.ptr);
size_t beg = 0;
if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT)
{
fprintf(fp, "\t...\n");
beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT;
}
else
beg = 0;
size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max);
for (size_t i = beg; i < end; ++i)
{
fprintf(fp, "\t%lu: ", i);
inst_print(program.instructions[i], stdout);
if (i == program.ptr)
fprintf(fp, " <---");
fprintf(fp, "\n");
}
if (end != program.max)
fprintf(fp, "\t...\n");
fprintf(fp, "]\n");
}
void vm_print_all(vm_t *vm, FILE *fp)
{
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_registers(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_stack(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_program(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
}
data_t vm_peek(vm_t *vm, data_type_t type)
{
switch (type)
{
case DATA_TYPE_NIL:
return DBYTE(0);
break;
case DATA_TYPE_BYTE:
if (vm->stack.ptr == 0)
return DBYTE(0);
return DBYTE(vm->stack.data[vm->stack.ptr - 1]);
break;
case DATA_TYPE_HWORD: {
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DHWORD(0);
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
byte b = vm->stack.data[vm->stack.ptr - i - 1];
bytes[HWORD_SIZE - 1 - i] = b;
}
return DWORD(convert_bytes_to_hword(bytes));
break;
}
case DATA_TYPE_WORD: {
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DWORD(0);
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
{
byte b = vm->stack.data[vm->stack.ptr - i - 1];
bytes[WORD_SIZE - 1 - i] = b;
}
return DWORD(convert_bytes_to_hword(bytes));
break;
}
default:
return DBYTE(0);
break;
}
}
void vm_push_byte(vm_t *vm, data_t b)
{
if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm->stack.data[vm->stack.ptr++] = b.as_byte;
}
void vm_push_hword(vm_t *vm, data_t f)
{
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
byte bytes[HWORD_SIZE] = {0};
convert_hword_to_bytes(f.as_hword, bytes);
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
byte b = bytes[HWORD_SIZE - i - 1];
vm_push_byte(vm, DBYTE(b));
}
}
void vm_push_word(vm_t *vm, data_t w)
{
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
byte bytes[WORD_SIZE] = {0};
convert_word_to_bytes(w.as_word, bytes);
for (size_t i = 0; i < WORD_SIZE; ++i)
{
byte b = bytes[WORD_SIZE - i - 1];
vm_push_byte(vm, DBYTE(b));
}
}
#define WORD_NTH_BYTE(WORD, N) (((WORD) >> ((N)*8)) & 0b11111111)
#define WORD_NTH_HWORD(WORD, N) \
(((WORD) >> ((N)*2)) & 0b11111111111111111111111111111111)
void vm_push_byte_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS * 8)
// TODO: Error (reg is not a valid byte register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// Interpret each word based register as 8 byte registers
byte b = WORD_NTH_BYTE(vm->registers.reg[reg / 8], reg % 8);
vm_push_byte(vm, DBYTE(b));
}
void vm_push_hword_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS * 2)
// TODO: Error (reg is not a valid hword register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// Interpret each word based register as 2 hword registers
hword hw = WORD_NTH_HWORD(vm->registers.reg[reg / 2], reg % 2);
vm_push_hword(vm, DHWORD(hw));
}
void vm_push_word_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid word register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm_push_word(vm, DWORD(vm->registers.reg[reg]));
}
data_t vm_mov_byte(vm_t *vm, byte reg)
{
if (reg >= (VM_REGISTERS * 8))
// TODO: Error (reg is not a valid byte register)
return DBYTE(0);
else if (vm->stack.ptr == 0)
// TODO: Error (STACK UNDERFLOW)
return DBYTE(0);
data_t ret = vm_pop_byte(vm);
word *reg_ptr = &vm->registers.reg[reg / 8];
*reg_ptr = (*reg_ptr) | (ret.as_word << ((reg % 8) * 8));
return ret;
}
data_t vm_mov_hword(vm_t *vm, byte reg)
{
if (reg >= (VM_REGISTERS * 2))
// TODO: Error (reg is not a valid hword register)
return DHWORD(0);
else if (vm->stack.ptr < sizeof(f64))
// TODO: Error (STACK UNDERFLOW)
return DHWORD(0);
data_t ret = vm_pop_hword(vm);
word *reg_ptr = &vm->registers.reg[reg / 2];
*reg_ptr = (*reg_ptr) | (ret.as_word << ((reg % 2) * 2));
return ret;
}
data_t vm_mov_word(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid word register)
return DWORD(0);
else if (vm->stack.ptr < sizeof(word))
// TODO: Error (STACK UNDERFLOW)
return DWORD(0);
data_t ret = vm_pop_word(vm);
vm->registers.reg[reg] = ret.as_word;
return ret;
}
void vm_dup_byte(vm_t *vm, word w)
{
if (vm->stack.ptr < w + 1)
// TODO: Error STACK_UNDERFLOW
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w]));
}
void vm_dup_hword(vm_t *vm, word w)
{
if (vm->stack.ptr < HWORD_SIZE * (w + 1))
// TODO: Error STACK_UNDERFLOW
return;
else if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
bytes[HWORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i];
vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes)));
}
void vm_dup_word(vm_t *vm, word w)
{
if (vm->stack.ptr < WORD_SIZE * (w + 1))
// TODO: Error STACK_UNDERFLOW
return;
else if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
bytes[i] = vm->stack.data[vm->stack.ptr - 1 - (WORD_SIZE * (w + 1)) + i];
vm_push_word(vm, DWORD(convert_bytes_to_word(bytes)));
}
data_t vm_pop_byte(vm_t *vm)
{
if (vm->stack.ptr == 0)
// TODO: Error STACK_UNDERFLOW
return DBYTE(0);
return DBYTE(vm->stack.data[--vm->stack.ptr]);
}
data_t vm_pop_hword(vm_t *vm)
{
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DHWORD(0);
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
data_t b = vm_pop_byte(vm);
bytes[HWORD_SIZE - 1 - i] = b.as_byte;
}
return DWORD(convert_bytes_to_hword(bytes));
}
data_t vm_pop_word(vm_t *vm)
{
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DWORD(0);
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
{
data_t b = vm_pop_byte(vm);
bytes[WORD_SIZE - 1 - i] = b.as_byte;
}
return DWORD(convert_bytes_to_word(bytes));
}
void vm_not_byte(vm_t *vm)
{
if (vm->stack.ptr == 0)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(!a));
}
void vm_not_hword(vm_t *vm)
{
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(!a));
}
void vm_not_word(vm_t *vm)
{
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(!a));
}
void vm_or_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a | b));
}
void vm_or_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a | b));
}
void vm_or_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a | b));
}
void vm_and_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a & b));
}
void vm_and_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a & b));
}
void vm_and_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a & b));
}
void vm_xor_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a ^ b));
}
void vm_xor_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a ^ b));
}
void vm_xor_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a ^ b));
}
void vm_eq_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a == b));
}
void vm_eq_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a == b));
}
void vm_eq_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a == b));
}
|