1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Implementation of bytecode for instructions
*/
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include "./inst.h"
const char *opcode_as_cstr(opcode_t code)
{
switch (code)
{
case OP_NOOP:
return "NOOP";
break;
case OP_PUSH_BYTE:
return "PUSH_BYTE";
break;
case OP_PUSH_WORD:
return "PUSH_WORD";
break;
case OP_PUSH_HWORD:
return "PUSH_HWORD";
break;
case OP_PUSH_REGISTER_BYTE:
return "PUSH_REGISTER_BYTE";
break;
case OP_PUSH_REGISTER_WORD:
return "PUSH_REGISTER_WORD";
break;
case OP_PUSH_REGISTER_HWORD:
return "PUSH_REGISTER_HWORD";
break;
case OP_POP_BYTE:
return "POP_BYTE";
break;
case OP_POP_WORD:
return "POP_WORD";
break;
case OP_POP_HWORD:
return "POP_HWORD";
break;
case OP_MOV_BYTE:
return "MOV_BYTE";
break;
case OP_MOV_WORD:
return "MOV_WORD";
break;
case OP_MOV_HWORD:
return "MOV_HWORD";
break;
case OP_NOT_BYTE:
return "NOT_BYTE";
break;
case OP_NOT_HWORD:
return "NOT_HWORD";
break;
case OP_NOT_WORD:
return "NOT_WORD";
break;
case OP_OR_BYTE:
return "OR_BYTE";
break;
case OP_OR_HWORD:
return "OR_HWORD";
break;
case OP_OR_WORD:
return "OR_WORD";
break;
case OP_AND_BYTE:
return "AND_BYTE";
break;
case OP_AND_HWORD:
return "AND_HWORD";
break;
case OP_AND_WORD:
return "AND_WORD";
break;
case OP_XOR_BYTE:
return "XOR_BYTE";
break;
case OP_XOR_HWORD:
return "XOR_HWORD";
break;
case OP_XOR_WORD:
return "XOR_WORD";
break;
case OP_EQ_BYTE:
return "EQ_BYTE";
break;
case OP_EQ_HWORD:
return "EQ_HWORD";
break;
case OP_EQ_WORD:
return "EQ_WORD";
break;
case OP_HALT:
return "HALT";
break;
}
return "";
}
void data_print(data_t datum, data_type_t type, FILE *fp)
{
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
fprintf(fp, "%X", datum.as_byte);
break;
case DATA_TYPE_HWORD:
fprintf(fp, "%d", datum.as_hword);
break;
case DATA_TYPE_WORD:
fprintf(fp, "%lX", datum.as_word);
break;
}
}
data_type_t get_opcode_data_type(opcode_t opcode)
{
data_type_t type = DATA_TYPE_NIL;
if (OPCODE_IS_TYPE(opcode, OP_PUSH))
type = (data_type_t)opcode;
else if (OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER))
type = opcode >> 1;
else if (OPCODE_IS_TYPE(opcode, OP_POP))
type = opcode >> 2;
else if (OPCODE_IS_TYPE(opcode, OP_MOV))
type = opcode >> 3;
return type;
}
void inst_print(inst_t instruction, FILE *fp)
{
fprintf(fp, "(%s", opcode_as_cstr(instruction.opcode));
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
data_type_t type = get_opcode_data_type(instruction.opcode);
fprintf(fp, ", datum=0x");
data_print(instruction.operand, type, fp);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(instruction.opcode, OP_MOV))
{
fprintf(fp, ", reg=0x");
data_print(instruction.operand, DATA_TYPE_BYTE, fp);
}
fprintf(fp, ")");
}
size_t inst_bytecode_size(inst_t inst)
{
size_t size = 1; // for opcode
if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH))
{
if (inst.opcode == OP_PUSH_BYTE)
++size;
else if (inst.opcode == OP_PUSH_HWORD)
size += sizeof(i32);
else if (inst.opcode == OP_PUSH_WORD)
size += sizeof(word);
}
else if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(inst.opcode, OP_MOV))
// Only need a byte for the register
++size;
else if (OPCODE_IS_TYPE(inst.opcode, OP_POP))
// No operand or register so leave as is
{}
return size;
}
void inst_write_bytecode(inst_t inst, darr_t *darr)
{
// Append opcode
darr_append_byte(darr, inst.opcode);
// Then append 0 or more operands
data_type_t to_append = DATA_TYPE_NIL;
if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH))
to_append = (data_type_t)inst.opcode;
else if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(inst.opcode, OP_MOV))
to_append = DATA_TYPE_BYTE;
switch (to_append)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
darr_append_byte(darr, inst.operand.as_byte);
break;
case DATA_TYPE_HWORD:
darr_append_bytes(darr, (byte *)&inst.operand.as_hword,
sizeof(inst.operand.as_hword));
break;
case DATA_TYPE_WORD:
darr_append_bytes(darr, (byte *)&inst.operand.as_word,
sizeof(inst.operand.as_word));
break;
}
}
void insts_write_bytecode(inst_t *insts, size_t size, darr_t *darr)
{
for (size_t i = 0; i < size; ++i)
inst_write_bytecode(insts[i], darr);
}
data_t read_type_from_darr(darr_t *darr, data_type_t type)
{
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
if (darr->used >= darr->available)
// TODO: Error (darr has no space left)
return DBYTE(0);
return DBYTE(darr->data[darr->used++]);
break;
case DATA_TYPE_HWORD:
if (darr->used + HWORD_SIZE >= darr->available)
// TODO: Error (darr has no space left)
return DWORD(0);
hword u = 0;
memcpy(&u, darr->data + darr->used, sizeof(u));
darr->used += sizeof(u);
return DHWORD(u);
break;
case DATA_TYPE_WORD:
if (darr->used + sizeof(word) >= darr->available)
// TODO: Error (darr has no space left)
return DWORD(0);
word w = 0;
memcpy(&w, darr->data + darr->used, sizeof(w));
darr->used += sizeof(w);
return DWORD(w);
break;
}
// TODO: Error (unrecognised type)
return DBYTE(0);
}
inst_t inst_read_bytecode(darr_t *darr)
{
if (darr->used >= darr->available)
return (inst_t){0};
inst_t inst = {0};
opcode_t opcode = darr->data[darr->used++];
if (opcode > OP_HALT)
// Translate to NOOP
return inst;
// Read operands
if (OPCODE_IS_TYPE(opcode, OP_PUSH))
inst.operand = read_type_from_darr(darr, get_opcode_data_type(opcode));
// Read register (as a byte)
else if (OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(opcode, OP_MOV))
inst.operand = read_type_from_darr(darr, DATA_TYPE_BYTE);
// Otherwise opcode doesn't take operands
inst.opcode = opcode;
return inst;
}
inst_t *insts_read_bytecode(darr_t *bytes, size_t *ret_size)
{
*ret_size = 0;
darr_t instructions = {0};
darr_init(&instructions, 0);
while (bytes->used < bytes->available)
{
inst_t instruction = inst_read_bytecode(bytes);
darr_append_bytes(&instructions, (byte *)&instruction, sizeof(instruction));
}
*ret_size = instructions.used / sizeof(inst_t);
return (inst_t *)instructions.data;
}
void insts_write_bytecode_file(inst_t *instructions, size_t size, FILE *fp)
{
darr_t darr = {0};
darr_init(&darr, 0);
insts_write_bytecode(instructions, size, &darr);
darr_write_file(&darr, fp);
free(darr.data);
}
inst_t *insts_read_bytecode_file(FILE *fp, size_t *ret)
{
darr_t darr = darr_read_file(fp);
inst_t *instructions = insts_read_bytecode(&darr, ret);
free(darr.data);
return instructions;
}
|