/* Copyright (C) 2023 Aryadev Chavali * You may distribute and modify this code under the terms of the * GPLv2 license. You should have received a copy of the GPLv2 * license with this file. If not, please write to: * aryadev@aryadevchavali.com. * Created: 2023-10-15 * Author: Aryadev Chavali * Description: Virtual machine implementation */ #include #include #include #include #include #include #include "./runtime.h" const char *err_as_cstr(err_t err) { switch (err) { case ERR_OK: return "OK"; case ERR_STACK_UNDERFLOW: return "STACK_UNDERFLOW"; case ERR_STACK_OVERFLOW: return "STACK_OVERFLOW"; case ERR_CALL_STACK_UNDERFLOW: return "CALL_STACK_UNDERFLOW"; case ERR_CALL_STACK_OVERFLOW: return "CALL_STACK_OVERFLOW"; case ERR_INVALID_OPCODE: return "INVALID_OPCODE"; case ERR_INVALID_REGISTER_BYTE: return "INVALID_REGISTER_BYTE"; case ERR_INVALID_REGISTER_HWORD: return "INVALID_REGISTER_HWORD"; case ERR_INVALID_REGISTER_WORD: return "INVALID_REGISTER_WORD"; case ERR_INVALID_PROGRAM_ADDRESS: return "INVALID_PROGRAM_ADDRESS"; case ERR_INVALID_PAGE_ADDRESS: return "INVALID_PAGE_ADDRESS"; case ERR_OUT_OF_BOUNDS: return "OUT_OF_BOUNDS"; case ERR_END_OF_PROGRAM: return "END_OF_PROGRAM"; default: return ""; } } err_t vm_execute(vm_t *vm) { static_assert(NUMBER_OF_OPCODES == 98, "vm_execute: Out of date"); struct Program *prog = &vm->program; if (prog->ptr >= prog->data->count) return ERR_END_OF_PROGRAM; inst_t instruction = prog->data->instructions[prog->ptr]; if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH)) { prog->ptr++; return PUSH_ROUTINES[instruction.opcode](vm, instruction.operand); } else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV) || OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) || OPCODE_IS_TYPE(instruction.opcode, OP_DUP) || OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) || OPCODE_IS_TYPE(instruction.opcode, OP_MSET) || OPCODE_IS_TYPE(instruction.opcode, OP_MGET)) { prog->ptr++; return WORD_ROUTINES[instruction.opcode](vm, instruction.operand.as_word); } else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP)) { // NOTE: We use the first register to hold the result of this pop data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP); prog->ptr++; switch (type) { case DATA_TYPE_NIL: break; case DATA_TYPE_BYTE: return vm_mov_byte(vm, 0); break; case DATA_TYPE_HWORD: return vm_mov_hword(vm, 0); break; case DATA_TYPE_WORD: return vm_mov_word(vm, 0); break; } return ERR_OK; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT) || OPCODE_IS_TYPE(instruction.opcode, OP_OR) || OPCODE_IS_TYPE(instruction.opcode, OP_AND) || OPCODE_IS_TYPE(instruction.opcode, OP_XOR) || OPCODE_IS_TYPE(instruction.opcode, OP_EQ) || OPCODE_IS_TYPE(instruction.opcode, OP_LT) || OPCODE_IS_TYPE(instruction.opcode, OP_LTE) || OPCODE_IS_TYPE(instruction.opcode, OP_GT) || OPCODE_IS_TYPE(instruction.opcode, OP_GTE) || OPCODE_IS_TYPE(instruction.opcode, OP_PLUS) || OPCODE_IS_TYPE(instruction.opcode, OP_SUB) || OPCODE_IS_TYPE(instruction.opcode, OP_MULT) || OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC_STACK) || OPCODE_IS_TYPE(instruction.opcode, OP_MSET_STACK) || OPCODE_IS_TYPE(instruction.opcode, OP_MGET_STACK) || instruction.opcode == OP_MDELETE || instruction.opcode == OP_MSIZE) { prog->ptr++; return STACK_ROUTINES[instruction.opcode](vm); } else if (instruction.opcode == OP_JUMP_ABS) return vm_jump(vm, instruction.operand.as_word); else if (instruction.opcode == OP_JUMP_STACK) { // Set prog->ptr to the word on top of the stack data_t ret = {0}; err_t err = vm_pop_word(vm, &ret); if (err) return err; return vm_jump(vm, ret.as_word); } else if (OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF)) { data_t datum = {0}; err_t err = ERR_OK; if (instruction.opcode == OP_JUMP_IF_BYTE) err = vm_pop_byte(vm, &datum); else if (instruction.opcode == OP_JUMP_IF_HWORD) err = vm_pop_hword(vm, &datum); else if (instruction.opcode == OP_JUMP_IF_WORD) err = vm_pop_word(vm, &datum); if (err) return err; // If datum != 0 then jump, else go to the next instruction if (datum.as_word != 0) return vm_jump(vm, instruction.operand.as_word); else ++prog->ptr; } else if (instruction.opcode == OP_CALL) { if (vm->call_stack.ptr >= vm->call_stack.max) return ERR_CALL_STACK_OVERFLOW; vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1; return vm_jump(vm, instruction.operand.as_word); } else if (instruction.opcode == OP_CALL_STACK) { if (vm->call_stack.ptr >= vm->call_stack.max) return ERR_CALL_STACK_OVERFLOW; vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1; data_t ret = {0}; err_t err = vm_pop_word(vm, &ret); if (err) return err; return vm_jump(vm, ret.as_word); } else if (instruction.opcode == OP_RET) { if (vm->call_stack.ptr == 0) return ERR_CALL_STACK_UNDERFLOW; return vm_jump(vm, vm->call_stack.address_pointers[--vm->call_stack.ptr]); } else if (OPCODE_IS_TYPE(instruction.opcode, OP_PRINT)) { data_t datum = {0}; enum { TYPE_BYTE, TYPE_CHAR, TYPE_INT, TYPE_HWORD, TYPE_LONG, TYPE_WORD } print_type; err_t err = ERR_OK; if (instruction.opcode == OP_PRINT_BYTE || instruction.opcode == OP_PRINT_CHAR) { print_type = instruction.opcode == OP_PRINT_BYTE ? TYPE_BYTE : TYPE_CHAR; err = vm_pop_byte(vm, &datum); } else if (instruction.opcode == OP_PRINT_HWORD || instruction.opcode == OP_PRINT_INT) { print_type = instruction.opcode == OP_PRINT_HWORD ? TYPE_HWORD : TYPE_INT; err = vm_pop_hword(vm, &datum); } else if (instruction.opcode == OP_PRINT_WORD || instruction.opcode == OP_PRINT_LONG) { print_type = instruction.opcode == OP_PRINT_WORD ? TYPE_WORD : TYPE_LONG; err = vm_pop_word(vm, &datum); } if (err) return err; switch (print_type) { case TYPE_CHAR: { printf("%c", datum.as_char); break; } case TYPE_BYTE: printf("0x%x", datum.as_byte); break; case TYPE_INT: { printf( #if PRINT_HEX == 1 "0x%X", #else "%" PRId32, #endif datum.as_int); break; } case TYPE_HWORD: printf( #if PRINT_HEX == 1 "0x%X", #else "%" PRIu32, #endif datum.as_hword); break; case TYPE_LONG: { printf( #if PRINT_HEX == 1 "0x%dX", #else "%" PRId64, #endif datum.as_long); break; } case TYPE_WORD: printf( #if PRINT_HEX == 1 "0x%lX", #else "%" PRIu64, #endif datum.as_word); break; } prog->ptr++; } else if (instruction.opcode == OP_HALT) { // Do nothing here. Should be caught by callers of vm_execute } else return ERR_INVALID_OPCODE; return ERR_OK; } err_t vm_execute_all(vm_t *vm) { struct Program *program = &vm->program; err_t err = ERR_OK; #if VERBOSE >= 1 size_t cycles = 0; #endif #if VERBOSE >= 2 registers_t prev_registers = vm->registers; size_t prev_sptr = 0; size_t prev_pages = 0; size_t prev_cptr = 0; #endif while (program->data->instructions[program->ptr].opcode != OP_HALT && program->ptr < program->data->count) { #if VERBOSE >= 2 fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles); fputs( "----------------------------------------------------------------------" "----------\n", stdout); vm_print_program(vm, stdout); fputs( "----------------------------------------------------------------------" "----------\n", stdout); if (prev_cptr != vm->call_stack.ptr) { vm_print_call_stack(vm, stdout); prev_cptr = vm->call_stack.ptr; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (prev_pages != vm->heap.pages) { vm_print_heap(vm, stdout); prev_pages = vm->heap.pages; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0) { vm_print_registers(vm, stdout); prev_registers = vm->registers; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (prev_sptr != vm->stack.ptr) { vm_print_stack(vm, stdout); prev_sptr = vm->stack.ptr; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } #endif #if VERBOSE >= 1 ++cycles; #endif err = vm_execute(vm); if (err) return err; } #if VERBOSE >= 1 fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n", TERM_YELLOW, TERM_RESET, cycles); vm_print_all(vm, stdout); #endif return err; } void vm_load_stack(vm_t *vm, byte *bytes, size_t size) { vm->stack.data = bytes; vm->stack.max = size; vm->stack.ptr = 0; } void vm_load_program(vm_t *vm, prog_t *program) { vm->program.ptr = 0; vm->program.data = program; } void vm_load_registers(vm_t *vm, registers_t registers) { vm->registers = registers; } void vm_load_heap(vm_t *vm, heap_t heap) { vm->heap = heap; } void vm_load_call_stack(vm_t *vm, word *buffer, size_t size) { vm->call_stack = (struct CallStack){.address_pointers = buffer, .ptr = 0, .max = size}; } void vm_stop(vm_t *vm) { #if VERBOSE >= 1 bool leaks = false; printf("[" TERM_YELLOW "DATA" TERM_RESET "]: Checking for leaks...\n"); if (vm->call_stack.ptr > 0) { leaks = true; printf("\t[" TERM_RED "DATA" TERM_RESET "]: Call stack at %lu\n\t[" TERM_RED "DATA" TERM_RESET "]\n\t[" TERM_RED "DATA" TERM_RESET "]: Call " "stack trace:", vm->call_stack.ptr); for (size_t i = vm->call_stack.ptr; i > 0; --i) { word w = vm->call_stack.address_pointers[i - 1]; printf("\t\t%lu: %lX", vm->call_stack.ptr - i, w); if (i != 1) printf(", "); printf("\n"); } } if (vm->heap.pages > 0) { leaks = true; page_t *cur = vm->heap.beg; size_t capacities[vm->heap.pages], total_capacity = 0; for (size_t i = 0; i < vm->heap.pages; ++i) { capacities[i] = cur->available; total_capacity += capacities[i]; } printf("\t[" TERM_RED "DATA" TERM_RESET "]: Heap: %luB (over %lu %s) not reclaimed\n", total_capacity, vm->heap.pages, vm->heap.pages == 1 ? "page" : "pages"); printf("\t[" TERM_RED "DATA" TERM_RESET "]: Complete breakdown:\n"); for (size_t i = 0; i < vm->heap.pages; i++) printf("\t\t[%lu]: %luB bytes lost\n", i, capacities[i]); } if (vm->stack.ptr > 0) { leaks = true; printf("\t[" TERM_RED "DATA" TERM_RESET "]: Stack: %luB not reclaimed\n", vm->stack.ptr); } if (leaks) printf("[" TERM_RED "DATA" TERM_RESET "]: Leaks found\n"); else printf("[" TERM_GREEN "DATA" TERM_RESET "]: No leaks found\n"); #endif free(vm->registers.data); free(vm->program.data); free(vm->stack.data); heap_stop(&vm->heap); free(vm->call_stack.address_pointers); vm->registers = (registers_t){0}; vm->program = (struct Program){0}; vm->stack = (struct Stack){0}; vm->heap = (heap_t){0}; } void vm_print_registers(vm_t *vm, FILE *fp) { registers_t reg = vm->registers; fprintf( fp, "Registers.used = %luB/%luH/%luW\nRegisters.available = %luB/%luH/%luW\n", vm->registers.used, vm->registers.used / HWORD_SIZE, vm->registers.used / WORD_SIZE, vm->registers.available, vm->registers.available / HWORD_SIZE, vm->registers.available / WORD_SIZE); fprintf(fp, "Registers.reg = ["); for (size_t i = 0; i < ceil((long double)reg.used / WORD_SIZE); ++i) { fprintf(fp, "{%lu:%lX}", i, VM_NTH_REGISTER(reg, i)); if (i != reg.used - 1) fprintf(fp, ", "); } fprintf(fp, "]\n"); } void vm_print_stack(vm_t *vm, FILE *fp) { struct Stack stack = vm->stack; fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max, stack.ptr); if (stack.ptr == 0) { fprintf(fp, "]\n"); return; } printf("\n"); for (size_t i = stack.ptr; i > 0; --i) { byte b = stack.data[i - 1]; fprintf(fp, "\t%lu: %X", stack.ptr - i, b); if (i != 1) fprintf(fp, ", "); fprintf(fp, "\n"); } fprintf(fp, "]\n"); } void vm_print_program(vm_t *vm, FILE *fp) { struct Program program = vm->program; fprintf(fp, "Program.max = %lu\nProgram.ptr = " "%lu\nProgram.instructions = [\n", program.data->count, program.ptr); size_t beg = 0; if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT) { fprintf(fp, "\t...\n"); beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT; } else beg = 0; size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.data->count); for (size_t i = beg; i < end; ++i) { fprintf(fp, "\t%lu: ", i); inst_print(program.data->instructions[i], fp); if (i == program.ptr) fprintf(fp, " <---"); fprintf(fp, "\n"); } if (end != program.data->count) fprintf(fp, "\t...\n"); fprintf(fp, "]\n"); } void vm_print_heap(vm_t *vm, FILE *fp) { heap_t heap = vm->heap; fprintf(fp, "Heap.pages = %lu\nHeap.data = [", heap.pages); if (heap.pages == 0) { fprintf(fp, "]\n"); return; } page_t *cur = heap.beg; fprintf(fp, "\n"); for (size_t i = 0; i < heap.pages; ++i) { fprintf(fp, "\tPage[%lu]: ", i); if (!cur) fprintf(fp, "\n"); else { fprintf(fp, "{"); for (size_t j = 0; j < cur->available; ++j) { fprintf(fp, "%x", cur->data[j]); if (j != cur->available - 1) fprintf(fp, ", "); else if ((j % 8) == 7) fprintf(fp, ",\n\t\t"); } fprintf(fp, "}\n"); cur = cur->next; } } fprintf(fp, "]\n"); } void vm_print_call_stack(vm_t *vm, FILE *fp) { struct CallStack cs = vm->call_stack; fprintf(fp, "CallStack.max = %lu\nCallStack.ptr = %lu\nCallStack.data = [", cs.max, cs.ptr); if (cs.ptr == 0) { fprintf(fp, "]\n"); return; } printf("\n"); for (size_t i = cs.ptr; i > 0; --i) { word w = cs.address_pointers[i - 1]; fprintf(fp, "\t%lu: %lX", cs.ptr - i, w); if (i != 1) fprintf(fp, ", "); fprintf(fp, "\n"); } fprintf(fp, "]\n"); } void vm_print_all(vm_t *vm, FILE *fp) { fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_program(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_call_stack(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_heap(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_registers(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_stack(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); } err_t vm_jump(vm_t *vm, word w) { if (w >= vm->program.data->count) return ERR_INVALID_PROGRAM_ADDRESS; vm->program.ptr = w; return ERR_OK; } err_t vm_push_byte(vm_t *vm, data_t b) { if (vm->stack.ptr >= vm->stack.max) return ERR_STACK_OVERFLOW; vm->stack.data[vm->stack.ptr++] = b.as_byte; return ERR_OK; } err_t vm_push_hword(vm_t *vm, data_t f) { if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max) return ERR_STACK_OVERFLOW; byte bytes[HWORD_SIZE] = {0}; convert_hword_to_bytes(f.as_hword, bytes); for (size_t i = 0; i < HWORD_SIZE; ++i) { byte b = bytes[HWORD_SIZE - i - 1]; vm_push_byte(vm, DBYTE(b)); } return ERR_OK; } err_t vm_push_word(vm_t *vm, data_t w) { if (vm->stack.ptr + WORD_SIZE >= vm->stack.max) return ERR_STACK_OVERFLOW; byte bytes[WORD_SIZE] = {0}; convert_word_to_bytes(w.as_word, bytes); for (size_t i = 0; i < WORD_SIZE; ++i) { byte b = bytes[WORD_SIZE - i - 1]; vm_push_byte(vm, DBYTE(b)); } return ERR_OK; } err_t vm_push_byte_register(vm_t *vm, word reg) { if (reg > vm->registers.used) return ERR_INVALID_REGISTER_BYTE; // Interpret each word based register as 8 byte registers byte b = vm->registers.data[reg]; return vm_push_byte(vm, DBYTE(b)); } err_t vm_push_hword_register(vm_t *vm, word reg) { if (reg > (vm->registers.used / HWORD_SIZE)) return ERR_INVALID_REGISTER_HWORD; // Interpret the bytes at point reg * HWORD_SIZE as an hword hword hw = *(hword *)(vm->registers.data + (reg * HWORD_SIZE)); return vm_push_hword(vm, DHWORD(hw)); } err_t vm_push_word_register(vm_t *vm, word reg) { if (reg > (vm->registers.used / WORD_SIZE)) return ERR_INVALID_REGISTER_WORD; return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg))); } err_t vm_mov_byte(vm_t *vm, word reg) { if (reg >= vm->registers.used) { // Expand capacity darr_ensure_capacity(&vm->registers, reg - vm->registers.used); vm->registers.used = MAX(vm->registers.used, reg + 1); } data_t ret = {0}; err_t err = vm_pop_byte(vm, &ret); if (err) return err; vm->registers.data[reg] = ret.as_byte; return ERR_OK; } err_t vm_mov_hword(vm_t *vm, word reg) { if (reg >= (vm->registers.used / HWORD_SIZE)) { // Expand capacity till we can ensure that this is a valid // register to use // Number of hwords needed ontop of what is allocated: const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE)); // Number of bytes needed ontop of what is allocated const size_t diff = (hwords + 1) * HWORD_SIZE; darr_ensure_capacity(&vm->registers, diff); vm->registers.used = MAX(vm->registers.used, (reg + 1) * HWORD_SIZE); } data_t ret = {0}; err_t err = vm_pop_hword(vm, &ret); if (err) return err; // Here we treat vm->registers as a set of hwords hword *hword_ptr = (hword *)(vm->registers.data + (reg * HWORD_SIZE)); *hword_ptr = ret.as_hword; return ERR_OK; } err_t vm_mov_word(vm_t *vm, word reg) { if (reg >= (vm->registers.used / WORD_SIZE)) { // Number of hwords needed ontop of what is allocated: const size_t words = (reg - (vm->registers.used / WORD_SIZE)); // Number of bytes needed ontop of what is allocated const size_t diff = (words + 1) * WORD_SIZE; darr_ensure_capacity(&vm->registers, diff); vm->registers.used = MAX(vm->registers.used, (reg + 1) * WORD_SIZE); } else if (vm->stack.ptr < sizeof(word)) return ERR_STACK_UNDERFLOW; data_t ret = {0}; err_t err = vm_pop_word(vm, &ret); if (err) return err; ((word *)(vm->registers.data))[reg] = ret.as_word; return ERR_OK; } err_t vm_dup_byte(vm_t *vm, word w) { if (vm->stack.ptr < w + 1) return ERR_STACK_UNDERFLOW; return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w])); } err_t vm_dup_hword(vm_t *vm, word w) { if (vm->stack.ptr < HWORD_SIZE * (w + 1)) return ERR_STACK_UNDERFLOW; byte bytes[HWORD_SIZE] = {0}; for (size_t i = 0; i < HWORD_SIZE; ++i) bytes[HWORD_SIZE - i - 1] = vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i]; return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes))); } err_t vm_dup_word(vm_t *vm, word w) { if (vm->stack.ptr < WORD_SIZE * (w + 1)) return ERR_STACK_UNDERFLOW; byte bytes[WORD_SIZE] = {0}; for (size_t i = 0; i < WORD_SIZE; ++i) bytes[WORD_SIZE - i - 1] = vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i]; return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes))); } err_t vm_malloc_byte(vm_t *vm, word n) { page_t *page = heap_allocate(&vm->heap, n); return vm_push_word(vm, DWORD((word)page)); } err_t vm_malloc_hword(vm_t *vm, word n) { page_t *page = heap_allocate(&vm->heap, n * HWORD_SIZE); return vm_push_word(vm, DWORD((word)page)); } err_t vm_malloc_word(vm_t *vm, word n) { page_t *page = heap_allocate(&vm->heap, n * WORD_SIZE); return vm_push_word(vm, DWORD((word)page)); } err_t vm_mset_byte(vm_t *vm, word nth) { // Stack layout should be [BYTE, PTR] data_t byte = {0}; err_t err = vm_pop_byte(vm, &byte); if (err) return err; data_t ptr = {0}; err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (nth >= page->available) return ERR_OUT_OF_BOUNDS; page->data[nth] = byte.as_byte; return ERR_OK; } err_t vm_mset_hword(vm_t *vm, word nth) { // Stack layout should be [HWORD, PTR] data_t byte = {0}; err_t err = vm_pop_hword(vm, &byte); if (err) return err; data_t ptr = {0}; err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (nth >= (page->available / HWORD_SIZE)) return ERR_OUT_OF_BOUNDS; ((hword *)page->data)[nth] = byte.as_hword; return ERR_OK; } err_t vm_mset_word(vm_t *vm, word nth) { // Stack layout should be [WORD, PTR] data_t byte = {0}; err_t err = vm_pop_word(vm, &byte); if (err) return err; data_t ptr = {0}; err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (nth >= (page->available / WORD_SIZE)) return ERR_OUT_OF_BOUNDS; ((word *)page->data)[nth] = byte.as_hword; return ERR_OK; } err_t vm_mget_byte(vm_t *vm, word n) { // Stack layout should be [PTR] data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (n >= page->available) return ERR_OUT_OF_BOUNDS; return vm_push_byte(vm, DBYTE(page->data[n])); } err_t vm_mget_hword(vm_t *vm, word n) { // Stack layout should be [PTR] data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (n >= (page->available / HWORD_SIZE)) return ERR_OUT_OF_BOUNDS; return vm_push_byte(vm, DHWORD(((hword *)page->data)[n])); } err_t vm_mget_word(vm_t *vm, word n) { // Stack layout should be [PTR] data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (n >= (page->available / WORD_SIZE)) return ERR_OUT_OF_BOUNDS; return vm_push_byte(vm, DHWORD(((word *)page->data)[n])); } err_t vm_pop_byte(vm_t *vm, data_t *ret) { if (vm->stack.ptr == 0) return ERR_STACK_UNDERFLOW; *ret = DBYTE(vm->stack.data[--vm->stack.ptr]); return ERR_OK; } err_t vm_pop_hword(vm_t *vm, data_t *ret) { if (vm->stack.ptr < HWORD_SIZE) return ERR_STACK_UNDERFLOW; byte bytes[HWORD_SIZE] = {0}; for (size_t i = 0; i < HWORD_SIZE; ++i) { data_t b = {0}; vm_pop_byte(vm, &b); bytes[i] = b.as_byte; } *ret = DWORD(convert_bytes_to_hword(bytes)); return ERR_OK; } err_t vm_pop_word(vm_t *vm, data_t *ret) { if (vm->stack.ptr < WORD_SIZE) return ERR_STACK_UNDERFLOW; byte bytes[WORD_SIZE] = {0}; for (size_t i = 0; i < WORD_SIZE; ++i) { data_t b = {0}; vm_pop_byte(vm, &b); bytes[i] = b.as_byte; } *ret = DWORD(convert_bytes_to_word(bytes)); return ERR_OK; } // TODO: rename this to something more appropriate #define VM_MEMORY_STACK_CONSTR(ACTION, TYPE) \ err_t vm_##ACTION##_stack_##TYPE(vm_t *vm) \ { \ data_t n = {0}; \ err_t err = vm_pop_word(vm, &n); \ if (err) \ return err; \ return vm_##ACTION##_##TYPE(vm, n.as_word); \ } VM_MEMORY_STACK_CONSTR(malloc, byte) VM_MEMORY_STACK_CONSTR(malloc, hword) VM_MEMORY_STACK_CONSTR(malloc, word) VM_MEMORY_STACK_CONSTR(mset, byte) VM_MEMORY_STACK_CONSTR(mset, hword) VM_MEMORY_STACK_CONSTR(mset, word) VM_MEMORY_STACK_CONSTR(mget, byte) VM_MEMORY_STACK_CONSTR(mget, hword) VM_MEMORY_STACK_CONSTR(mget, word) err_t vm_mdelete(vm_t *vm) { data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; bool done = heap_free_page(&vm->heap, page); if (!done) return ERR_INVALID_PAGE_ADDRESS; return ERR_OK; } err_t vm_msize(vm_t *vm) { data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; return vm_push_word(vm, DWORD(page->available)); } // TODO: rename this to something more appropriate #define VM_NOT_TYPE(TYPEL, TYPEU) \ err_t vm_not_##TYPEL(vm_t *vm) \ { \ data_t a = {0}; \ err_t err = vm_pop_##TYPEL(vm, &a); \ if (err) \ return err; \ return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \ } VM_NOT_TYPE(byte, BYTE) VM_NOT_TYPE(hword, HWORD) VM_NOT_TYPE(word, WORD) // TODO: rename this to something more appropriate #define VM_SAME_TYPE(COMPNAME, COMP, TYPEL, TYPEU) \ err_t vm_##COMPNAME##_##TYPEL(vm_t *vm) \ { \ data_t a = {0}, b = {0}; \ err_t err = vm_pop_##TYPEL(vm, &a); \ if (err) \ return err; \ err = vm_pop_##TYPEL(vm, &b); \ if (err) \ return err; \ return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \ } // TODO: rename this to something more appropriate #define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL) \ err_t vm_##COMPNAME##_##GETL(vm_t *vm) \ { \ data_t a = {0}, b = {0}; \ err_t err = vm_pop_##TYPEL(vm, &a); \ if (err) \ return err; \ err = vm_pop_##TYPEL(vm, &b); \ if (err) \ return err; \ return vm_push_byte(vm, DBYTE(b.as_##GETL COMP a.as_##GETL)); \ } VM_SAME_TYPE(or, |, byte, BYTE) VM_SAME_TYPE(or, |, hword, HWORD) VM_SAME_TYPE(or, |, word, WORD) VM_SAME_TYPE(and, &, byte, BYTE) VM_SAME_TYPE(and, &, hword, HWORD) VM_SAME_TYPE(and, &, word, WORD) VM_SAME_TYPE(xor, ^, byte, BYTE) VM_SAME_TYPE(xor, ^, hword, HWORD) VM_SAME_TYPE(xor, ^, word, WORD) VM_SAME_TYPE(plus, +, byte, BYTE) VM_SAME_TYPE(plus, +, hword, HWORD) VM_SAME_TYPE(plus, +, word, WORD) VM_SAME_TYPE(sub, -, byte, BYTE) VM_SAME_TYPE(sub, -, hword, HWORD) VM_SAME_TYPE(sub, -, word, WORD) VM_SAME_TYPE(mult, *, byte, BYTE) VM_SAME_TYPE(mult, *, hword, HWORD) VM_SAME_TYPE(mult, *, word, WORD) VM_COMPARATOR_TYPE(eq, ==, byte, byte) VM_COMPARATOR_TYPE(eq, ==, byte, char) VM_COMPARATOR_TYPE(eq, ==, hword, hword) VM_COMPARATOR_TYPE(eq, ==, hword, int) VM_COMPARATOR_TYPE(eq, ==, word, word) VM_COMPARATOR_TYPE(eq, ==, word, long) VM_COMPARATOR_TYPE(lt, <, byte, byte) VM_COMPARATOR_TYPE(lt, <, byte, char) VM_COMPARATOR_TYPE(lt, <, hword, hword) VM_COMPARATOR_TYPE(lt, <, hword, int) VM_COMPARATOR_TYPE(lt, <, word, word) VM_COMPARATOR_TYPE(lt, <, word, long) VM_COMPARATOR_TYPE(lte, <=, byte, byte) VM_COMPARATOR_TYPE(lte, <=, byte, char) VM_COMPARATOR_TYPE(lte, <=, hword, hword) VM_COMPARATOR_TYPE(lte, <=, hword, int) VM_COMPARATOR_TYPE(lte, <=, word, word) VM_COMPARATOR_TYPE(lte, <=, word, long) VM_COMPARATOR_TYPE(gt, >, byte, byte) VM_COMPARATOR_TYPE(gt, >, byte, char) VM_COMPARATOR_TYPE(gt, >, hword, hword) VM_COMPARATOR_TYPE(gt, >, hword, int) VM_COMPARATOR_TYPE(gt, >, word, word) VM_COMPARATOR_TYPE(gt, >, word, long) VM_COMPARATOR_TYPE(gte, >=, byte, byte) VM_COMPARATOR_TYPE(gte, >=, byte, char) VM_COMPARATOR_TYPE(gte, >=, hword, hword) VM_COMPARATOR_TYPE(gte, >=, hword, int) VM_COMPARATOR_TYPE(gte, >=, word, word) VM_COMPARATOR_TYPE(gte, >=, word, long)