#+title: TODOs #+author: Aryadev Chavali #+date: 2023-11-02 * TODO Better documentation [0%] :DOC: ** TODO Comment coverage [0%] *** WIP Lib [50%] **** DONE lib/base.h **** DONE lib/darr.h **** TODO lib/heap.h **** TODO lib/inst.h *** TODO ASM [0%] **** TODO asm/lexer.h **** TODO asm/parser.h *** TODO VM [0%] **** TODO vm/runtime.h ** TODO Specification * TODO Preprocessing directives :ASM: Like in FASM or NASM where we can give certain helpful instructions to the assembler. I'd use the ~%~ symbol to designate preprocessor directives. ** TODO Macros Essentially constants expressions which take literal parameters (i.e. tokens) and can use them throughout the body. Something like #+begin_src asm %macro(name)(param1 param2 param3) ... %end #+end_src Where each parameter is substituted in a call at preprocessing time. A call should look something like this: #+begin_src asm $name 1 2 3 #+end_src and those tokens will be substituted literally in the macro body. * TODO Write assembler in a different language :ASM: While the runtime and base library needs to deal with only binary, the assembler has to deal with string inputs and a larger variety of bugs. As the base library is written in C, and is all that is necessary to write a program that targets the virtual machine, we could realistically use another language to write the assembler in via FFI with minimal pain. Languages in the competition: + C++ + Rust + Python * TODO Introduce error handling in base library :LIB: There is a large variety of TODOs about errors * TODO Standard library :ASM:VM: I should start considering this and how a user may use it. Should it be an option in the VM and/or assembler binaries (i.e. a flag) or something the user has to specify in their source files? Something to consider is /static/ and /dynamic/ "linking" i.e.: + Static linking: assembler inserts all used library definitions into the bytecode output directly + We could insert all of it at the start of the bytecode file, and with [[*Start points][Start points]] this won't interfere with user code + 2023-11-03: Finishing the Start point feature has made these features more tenable. A program header which is compiled and interpreted in bytecode works wonders. + Furthermore library code will have fixed program addresses (always at the start) so we'll know at start of assembler runtime where to resolve standard library subroutine calls + Virtual machine needs no changes to do this + Dynamic linking: virtual machine has fixed program storage for library code (a ROM), and assembler makes jump references specifically for this program storage + When assembling subroutine calls, just need to put references to this library storage (some kind of shared state between VM and assembler to know what these references are) + VM needs to manage a ROM of some kind for library code + How do we ensure assembled links to subroutine calls don't conflict with user code jumps? + Possibility: most significant bit of a program address is reserved such that if 0 it refers to user code and if 1 it refers to library code + 63 bit references user code (not a lot of loss in precision) + Easy to check if a reference is a library reference or a user code reference by checking "sign bit" (negativity) ** TODO Dynamic Linking The address operand of every program control instruction (~CALL~, ~JUMP~, ~JUMP.IF~) has a specific encoding if the standard library is dynamically linked: + If the most significant bit is 0, the remaining 63 bits encode an absolute address within the program + Otherwise, the address encodes a standard library subroutine. The bits within the address follow this schema: + The next 15 bits (7 from the most significant byte, then 8 from the next byte) represent the specific module where the subroutine is defined (over 32767 possible library values) + The remaining 48 bits (6 bytes) encode the absolute program address in the bytecode of that specific module for the start of the subroutine (over 281 *trillion* values) The assembler will automatically encode this based on "%USE" calls and the name of the subroutines called. On the virtual machine, there is a storage location (similar to the ROM of real machines) which stores the bytecode for modules of the standard library, indexed by the module number. This means, on deserialising the address into the proper components, the VM can refer to the module bytecode then jump to the correct address. 2023-11-09: I'll need a way to run library code in the current program system in the runtime. It currently doesn't support jumps or work in programs outside of the main one unfortunately. Any proper work done in this area requires some proper refactoring. 2023-11-09: Constants or inline macros need to be reconfigured for this to work: at parse time, we work out the inlines directly which means compiling bytecode with "standard library" macros will not work as they won't be in the token stream. Either we don't allow preprocessor work in the standard library at all (which is bad cos we can't then set standard limits or other useful things) or we insert them into the registries at parse time for use in program parsing (which not only requires assembler refactoring to figure out what libraries are used (to pull definitions from) but also requires making macros "recognisable" in bytecode because they're essentially invisible). * Completed ** DONE Write a label/jump system :ASM: Essentially a user should be able to write arbitrary labels (maybe through ~label x~ or ~x:~ syntax) which can be referred to by ~jump~. It'll purely be on the assembler side as a processing step, where the emitted bytecode purely refers to absolute addresses; the VM should just be dealing with absolute addresses here. ** DONE Allow relative addresses in jumps :ASM: As requested, a special syntax for relative address jumps. Sometimes it's a bit nicer than a label. ** DONE Calling and returning control flow :VM: :ASM: When writing library code we won't know the addresses of where callers are jumping from. However, most library functions want to return control flow back to where the user had called them: we want the code to act almost like an inline function. There are two ways I can think of achieving this: + Some extra syntax around labels (something like ~@inline