/* Copyright (C) 2023 Aryadev Chavali * You may distribute and modify this code under the terms of the * GPLv2 license. You should have received a copy of the GPLv2 * license with this file. If not, please write to: * aryadev@aryadevchavali.com. * Created: 2023-10-15 * Author: Aryadev Chavali * Description: Virtual machine implementation */ #include #include #include #include "./runtime.h" void vm_execute(vm_t *vm) { struct Program *prog = &vm->program; if (prog->ptr >= prog->max) // TODO: Error (Went past end of program) return; inst_t instruction = prog->instructions[prog->ptr]; if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH)) { PUSH_ROUTINES[instruction.opcode](vm, instruction.operand); vm->registers.ret = instruction.operand.as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER)) { PUSH_REG_ROUTINES[instruction.opcode](vm, instruction.operand.as_word); vm->registers.ret = instruction.operand.as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP)) { // NOTE: We use the first register to hold the result of this pop data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP); data_t datum = vm_peek(vm, type); switch (type) { case DATA_TYPE_NIL: break; case DATA_TYPE_BYTE: vm_mov_byte(vm, (VM_REGISTERS * 8) - 1); break; case DATA_TYPE_HWORD: vm_mov_hword(vm, (VM_REGISTERS * 4) - 1); break; case DATA_TYPE_WORD: vm_mov_hword(vm, VM_REGISTERS - 1); break; } vm->registers.ret = datum.as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV)) { data_t d = MOV_ROUTINES[instruction.opcode](vm, instruction.operand.as_word); vm->registers.ret = d.as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT)) { NOT_ROUTINES[instruction.opcode](vm); vm->registers.ret = vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_NOT)).as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_OR)) { OR_ROUTINES[instruction.opcode](vm); vm->registers.ret = vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_OR)).as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_AND)) { AND_ROUTINES[instruction.opcode](vm); vm->registers.ret = vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_AND)).as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_XOR)) { XOR_ROUTINES[instruction.opcode](vm); vm->registers.ret = vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_XOR)).as_word; prog->ptr++; } else if (OPCODE_IS_TYPE(instruction.opcode, OP_EQ)) { EQ_ROUTINES[instruction.opcode](vm); vm->registers.ret = vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_EQ)).as_word; prog->ptr++; } else if (instruction.opcode == OP_HALT) { // Do nothing here. Should be caught by callers of vm_execute } else { // TODO: Error (Unknown opcode) return; } } void vm_execute_all(vm_t *vm) { struct Program *program = &vm->program; #if VERBOSE == 1 struct Registers prev_registers = vm->registers; size_t cycles = 0; size_t prev_sptr = 0; #endif while (program->instructions[program->ptr].opcode != OP_HALT) { #if VERBOSE >= 1 fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles); fputs( "----------------------------------------------------------------------" "----------\n", stdout); vm_print_program(vm, stdout); fputs( "----------------------------------------------------------------------" "----------\n", stdout); if (memcmp(prev_registers.reg, vm->registers.reg, ARR_SIZE(vm->registers.reg)) != 0) { vm_print_registers(vm, stdout); prev_registers = vm->registers; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (prev_sptr != vm->stack.ptr) { vm_print_stack(vm, stdout); prev_sptr = vm->stack.ptr; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } ++cycles; #endif vm_execute(vm); } #if VERBOSE >= 1 fprintf(stdout, "[vm_execute_all]: Final VM state(Cycle %lu)\n", cycles); vm_print_all(vm, stdout); #endif } void vm_load_stack(vm_t *vm, byte *bytes, size_t size) { vm->stack.data = bytes; vm->stack.max = size; vm->stack.ptr = 0; } void vm_load_program(vm_t *vm, inst_t *instructions, size_t size) { vm->program.instructions = instructions; vm->program.max = size; vm->program.ptr = 0; } void vm_print_registers(vm_t *vm, FILE *fp) { struct Registers reg = vm->registers; fprintf(fp, "Registers.ret = 0x%lX\n", reg.ret); fprintf(fp, "Registers.reg = ["); for (size_t i = 0; i < VM_REGISTERS; ++i) { fprintf(fp, "{%lu:%lX}", i, reg.reg[i]); if (i != VM_REGISTERS - 1) fprintf(fp, ", "); } fprintf(fp, "]\n"); } void vm_print_stack(vm_t *vm, FILE *fp) { struct Stack stack = vm->stack; fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max, stack.ptr); if (stack.ptr == 0) { fprintf(fp, "]\n"); return; } printf("\n"); for (size_t i = stack.ptr; i > 0; --i) { byte b = stack.data[i - 1]; fprintf(fp, "\t%lu: %X", stack.ptr - i, b); if (i != 1) fprintf(fp, ", "); fprintf(fp, "\n"); } fprintf(fp, "]\n"); } void vm_print_program(vm_t *vm, FILE *fp) { struct Program program = vm->program; fprintf(fp, "Program.max = %lu\nProgram.ptr = " "%lu\nProgram.instructions = [\n", program.max, program.ptr); size_t beg = 0; if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT) { fprintf(fp, "\t...\n"); beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT; } else beg = 0; size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max); for (size_t i = beg; i < end; ++i) { fprintf(fp, "\t%lu: ", i); inst_print(program.instructions[i], stdout); if (i == program.ptr) fprintf(fp, " <---"); fprintf(fp, "\n"); } if (end != program.max) fprintf(fp, "\t...\n"); fprintf(fp, "]\n"); } void vm_print_all(vm_t *vm, FILE *fp) { fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_registers(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_stack(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); vm_print_program(vm, fp); fputs("----------------------------------------------------------------------" "----------\n", fp); } data_t vm_peek(vm_t *vm, data_type_t type) { switch (type) { case DATA_TYPE_NIL: return DBYTE(0); break; case DATA_TYPE_BYTE: if (vm->stack.ptr == 0) return DBYTE(0); return DBYTE(vm->stack.data[vm->stack.ptr - 1]); break; case DATA_TYPE_HWORD: if (vm->stack.ptr < HWORD_SIZE) // TODO: Error STACK_UNDERFLOW return DHWORD(0); hword h = 0; for (size_t i = 0; i < HWORD_SIZE; ++i) { byte b = vm->stack.data[vm->stack.ptr - 1 - i]; h = h | (((word)b) << (i * 8)); } return DWORD(h); break; case DATA_TYPE_WORD: if (vm->stack.ptr < WORD_SIZE) // TODO: Error STACK_UNDERFLOW return DWORD(0); word w = 0; for (size_t i = 0; i < WORD_SIZE; ++i) { byte b = vm->stack.data[vm->stack.ptr - 1 - i]; w = w | (((word)b) << (i * 8)); } return DWORD(w); break; default: return DBYTE(0); break; } } void vm_push_byte(vm_t *vm, data_t b) { if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; vm->stack.data[vm->stack.ptr++] = b.as_byte; } void vm_push_hword(vm_t *vm, data_t f) { if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; for (size_t i = 32; i > 0; i -= 8) { const word mask = ((word)0b11111111) << (i - 8); byte b = (f.as_hword & mask) >> (i - 8); vm_push_byte(vm, DBYTE(b)); } } void vm_push_word(vm_t *vm, data_t w) { if (vm->stack.ptr + WORD_SIZE >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; // By default store in big endian for (size_t i = 64; i > 0; i -= 8) { const word mask = ((word)0b11111111) << (i - 8); byte b = (w.as_word & mask) >> (i - 8); vm_push_byte(vm, DBYTE(b)); } } #define WORD_NTH_BYTE(WORD, N) (((WORD) >> ((N)*8)) & 0b11111111) #define WORD_NTH_HWORD(WORD, N) \ (((WORD) >> ((N)*2)) & 0b11111111111111111111111111111111) void vm_push_byte_register(vm_t *vm, byte reg) { if (reg >= VM_REGISTERS * 8) // TODO: Error (reg is not a valid byte register) return; else if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; // Interpret each word based register as 8 byte registers byte b = WORD_NTH_BYTE(vm->registers.reg[reg / 8], reg % 8); vm_push_byte(vm, DBYTE(b)); } void vm_push_hword_register(vm_t *vm, byte reg) { if (reg >= VM_REGISTERS * 2) // TODO: Error (reg is not a valid hword register) return; else if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; // Interpret each word based register as 2 hword registers hword hw = WORD_NTH_HWORD(vm->registers.reg[reg / 2], reg % 2); vm_push_hword(vm, DHWORD(hw)); } void vm_push_word_register(vm_t *vm, byte reg) { if (reg >= VM_REGISTERS) // TODO: Error (reg is not a valid word register) return; else if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; vm_push_word(vm, DWORD(vm->registers.reg[reg])); } data_t vm_mov_byte(vm_t *vm, byte reg) { if (reg >= (VM_REGISTERS * 8)) // TODO: Error (reg is not a valid byte register) return DBYTE(0); else if (vm->stack.ptr == 0) // TODO: Error (STACK UNDERFLOW) return DBYTE(0); data_t ret = vm_pop_byte(vm); word *reg_ptr = &vm->registers.reg[reg / 8]; *reg_ptr = (*reg_ptr) | (ret.as_word << ((reg % 8) * 8)); return ret; } data_t vm_mov_hword(vm_t *vm, byte reg) { if (reg >= (VM_REGISTERS * 2)) // TODO: Error (reg is not a valid hword register) return DHWORD(0); else if (vm->stack.ptr < sizeof(f64)) // TODO: Error (STACK UNDERFLOW) return DHWORD(0); data_t ret = vm_pop_hword(vm); word *reg_ptr = &vm->registers.reg[reg / 2]; *reg_ptr = (*reg_ptr) | (ret.as_word << ((reg % 2) * 2)); return ret; } data_t vm_mov_word(vm_t *vm, byte reg) { if (reg >= VM_REGISTERS) // TODO: Error (reg is not a valid word register) return DWORD(0); else if (vm->stack.ptr < sizeof(word)) // TODO: Error (STACK UNDERFLOW) return DWORD(0); data_t ret = vm_pop_word(vm); vm->registers.reg[reg] = ret.as_word; return ret; } data_t vm_pop_byte(vm_t *vm) { if (vm->stack.ptr == 0) // TODO: Error STACK_UNDERFLOW return DBYTE(0); return DBYTE(vm->stack.data[--vm->stack.ptr]); } data_t vm_pop_hword(vm_t *vm) { if (vm->stack.ptr < HWORD_SIZE) // TODO: Error STACK_UNDERFLOW return DHWORD(0); hword h = 0; for (size_t i = 0; i < HWORD_SIZE; ++i) { data_t b = vm_pop_byte(vm); h = h | ((word)(b.as_byte) << (i * 8)); } return DWORD(h); } data_t vm_pop_word(vm_t *vm) { if (vm->stack.ptr < WORD_SIZE) // TODO: Error STACK_UNDERFLOW return DWORD(0); word w = 0; for (size_t i = 0; i < WORD_SIZE; ++i) { data_t b = vm_pop_byte(vm); w = w | ((word)(b.as_byte) << (i * 8)); } return DWORD(w); } void vm_not_byte(vm_t *vm) { if (vm->stack.ptr == 0) // TODO: Error STACK_UNDERFLOW return; byte a = vm_pop_byte(vm).as_byte; vm_push_byte(vm, DBYTE(!a)); } void vm_not_hword(vm_t *vm) { if (vm->stack.ptr < HWORD_SIZE) // TODO: Error STACK_UNDERFLOW return; hword a = vm_pop_hword(vm).as_hword; vm_push_hword(vm, DHWORD(!a)); } void vm_not_word(vm_t *vm) { if (vm->stack.ptr < WORD_SIZE) // TODO: Error STACK_UNDERFLOW return; word a = vm_pop_word(vm).as_word; vm_push_word(vm, DWORD(!a)); } void vm_or_byte(vm_t *vm) { if (vm->stack.ptr < 2) // TODO: Error STACK_UNDERFLOW return; byte a = vm_pop_byte(vm).as_byte; byte b = vm_pop_byte(vm).as_byte; vm_push_byte(vm, DBYTE(a | b)); } void vm_or_hword(vm_t *vm) { if (vm->stack.ptr < (HWORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; hword a = vm_pop_hword(vm).as_hword; hword b = vm_pop_hword(vm).as_hword; vm_push_hword(vm, DHWORD(a | b)); } void vm_or_word(vm_t *vm) { if (vm->stack.ptr < (WORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; word a = vm_pop_word(vm).as_word; word b = vm_pop_word(vm).as_word; vm_push_word(vm, DWORD(a | b)); } void vm_and_byte(vm_t *vm) { if (vm->stack.ptr < 2) // TODO: Error STACK_UNDERFLOW return; byte a = vm_pop_byte(vm).as_byte; byte b = vm_pop_byte(vm).as_byte; vm_push_byte(vm, DBYTE(a & b)); } void vm_and_hword(vm_t *vm) { if (vm->stack.ptr < (HWORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; hword a = vm_pop_hword(vm).as_hword; hword b = vm_pop_hword(vm).as_hword; vm_push_hword(vm, DHWORD(a & b)); } void vm_and_word(vm_t *vm) { if (vm->stack.ptr < (WORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; word a = vm_pop_word(vm).as_word; word b = vm_pop_word(vm).as_word; vm_push_word(vm, DWORD(a & b)); } void vm_xor_byte(vm_t *vm) { if (vm->stack.ptr < 2) // TODO: Error STACK_UNDERFLOW return; byte a = vm_pop_byte(vm).as_byte; byte b = vm_pop_byte(vm).as_byte; vm_push_byte(vm, DBYTE(a ^ b)); } void vm_xor_hword(vm_t *vm) { if (vm->stack.ptr < (HWORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; hword a = vm_pop_hword(vm).as_hword; hword b = vm_pop_hword(vm).as_hword; vm_push_hword(vm, DHWORD(a ^ b)); } void vm_xor_word(vm_t *vm) { if (vm->stack.ptr < (WORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; word a = vm_pop_word(vm).as_word; word b = vm_pop_word(vm).as_word; vm_push_word(vm, DWORD(a ^ b)); } void vm_eq_byte(vm_t *vm) { if (vm->stack.ptr < 2) // TODO: Error STACK_UNDERFLOW return; byte a = vm_pop_byte(vm).as_byte; byte b = vm_pop_byte(vm).as_byte; vm_push_byte(vm, DBYTE(a == b)); } void vm_eq_hword(vm_t *vm) { if (vm->stack.ptr < (HWORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; hword a = vm_pop_hword(vm).as_hword; hword b = vm_pop_hword(vm).as_hword; vm_push_hword(vm, DHWORD(a == b)); } void vm_eq_word(vm_t *vm) { if (vm->stack.ptr < (WORD_SIZE * 2)) // TODO: Error STACK_UNDERFLOW return; word a = vm_pop_word(vm).as_word; word b = vm_pop_word(vm).as_word; vm_push_word(vm, DWORD(a == b)); }