/* Copyright (C) 2023 Aryadev Chavali * You may distribute and modify this code under the terms of the * GPLv2 license. You should have received a copy of the GPLv2 * license with this file. If not, please write to: * aryadev@aryadevchavali.com. * Created: 2023-10-15 * Author: Aryadev Chavali * Description: Entrypoint to program */ #include #include #include "./base.h" #include "./inst.h" #define VM_BYTE_REGISTERS 8 #define VM_WORD_REGISTERS 8 #define VM_FLOAT_REGISTERS 8 typedef struct { struct Registers { word ret; byte b[VM_BYTE_REGISTERS]; word w[VM_WORD_REGISTERS]; f64 f[VM_FLOAT_REGISTERS]; } registers; struct Stack { byte *data; word ptr, max; } stack; struct Program { inst_t *instructions; word ptr, max; } program; } vm_t; void vm_load_program(vm_t *vm, inst_t *instructions, size_t size) { vm->program.instructions = instructions; vm->program.max = size; vm->program.ptr = 0; } void vm_load_stack(vm_t *vm, byte *bytes, size_t size) { vm->stack.data = bytes; vm->stack.max = size; vm->stack.ptr = 0; } void vm_push_byte(vm_t *vm, data_t b) { if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; vm->stack.data[vm->stack.ptr++] = b.as_byte; } void vm_push_word(vm_t *vm, data_t w) { if (vm->stack.ptr + WORD_SIZE >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; // By default store in big endian for (size_t i = 64; i > 0; i -= 8) { const word mask = ((word)0b11111111) << (i - 8); byte b = (w.as_word & mask) >> (i - 8); vm_push_byte(vm, DBYTE(b)); } } void vm_push_float(vm_t *vm, data_t f) { if (vm->stack.ptr + FLOAT_SIZE >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; // TODO: Make this machine independent (encode IEEE754 floats // yourself?) memcpy(vm->stack.data + vm->stack.ptr, &f.as_float, FLOAT_SIZE); vm->stack.ptr += FLOAT_SIZE; } void vm_push_byte_register(vm_t *vm, word reg) { if (reg >= VM_BYTE_REGISTERS) // TODO: Error (reg is not a valid byte register) return; else if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; vm_push_byte(vm, DBYTE(vm->registers.b[reg])); } void vm_push_word_register(vm_t *vm, word reg) { if (reg >= VM_WORD_REGISTERS) // TODO: Error (reg is not a valid word register) return; else if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; vm_push_word(vm, DWORD(vm->registers.w[reg])); } void vm_push_float_register(vm_t *vm, word reg) { if (reg >= VM_FLOAT_REGISTERS) // TODO: Error (reg is not a valid float register) return; else if (vm->stack.ptr >= vm->stack.max) // TODO: Error STACK_OVERFLOW return; vm_push_float(vm, DFLOAT(vm->registers.f[reg])); } void vm_mov_byte(vm_t *vm, data_t b, word reg) { if (reg >= VM_BYTE_REGISTERS) // TODO: Error (reg is not a valid byte register) return; vm->registers.b[reg] = b.as_byte; } void vm_mov_word(vm_t *vm, data_t w, word reg) { if (reg >= VM_WORD_REGISTERS) // TODO: Error (reg is not a valid word register) return; vm->registers.w[reg] = w.as_word; } void vm_mov_float(vm_t *vm, data_t f, word reg) { if (reg >= VM_FLOAT_REGISTERS) // TODO: Error (reg is not a valid float register) return; vm->registers.f[reg] = f.as_float; } data_t vm_pop_byte(vm_t *vm) { if (vm->stack.ptr == 0) // TODO: Error STACK_UNDERFLOW return DBYTE(0); return DBYTE(vm->stack.data[--vm->stack.ptr]); } data_t vm_pop_word(vm_t *vm) { if (vm->stack.ptr < WORD_SIZE) // TODO: Error STACK_UNDERFLOW return DWORD(0); word w = 0; for (size_t i = 0; i < WORD_SIZE; ++i) { data_t b = vm_pop_byte(vm); w = w | ((word)(b.as_byte) << (i * 8)); } return DWORD(w); } data_t vm_pop_float(vm_t *vm) { if (vm->stack.ptr < FLOAT_SIZE) // TODO: Error STACK_UNDERFLOW return DFLOAT(0); f64 f = 0; // TODO: Make this machine independent (encode IEEE754 floats // yourself?) memcpy(&f, vm->stack.data + vm->stack.ptr - FLOAT_SIZE, FLOAT_SIZE); vm->stack.ptr -= FLOAT_SIZE; return DFLOAT(f); } typedef void (*push_f)(vm_t *, data_t); static const push_f PUSH_ROUTINES[] = { [OP_PUSH_BYTE] = vm_push_byte, [OP_PUSH_WORD] = vm_push_word, [OP_PUSH_FLOAT] = vm_push_float, }; typedef void (*mov_f)(vm_t *, data_t, word); static const mov_f MOV_ROUTINES[] = { [OP_MOV_BYTE] = vm_mov_byte, [OP_MOV_WORD] = vm_mov_word, [OP_MOV_FLOAT] = vm_mov_float, }; typedef data_t (*pop_f)(vm_t *); static const pop_f POP_ROUTINES[] = { [OP_POP_BYTE] = vm_pop_byte, [OP_POP_WORD] = vm_pop_word, [OP_POP_FLOAT] = vm_pop_float, }; void vm_execute(vm_t *vm) { struct Program *prog = &vm->program; if (prog->ptr >= prog->max) // TODO: Error (Went past end of program) return; inst_t instruction = prog->instructions[prog->ptr]; if (OPCODE_IS_PUSH(instruction.opcode)) { PUSH_ROUTINES[instruction.opcode](vm, instruction.operand); vm->registers.ret = instruction.operand.as_word; prog->ptr++; } else if (OPCODE_IS_MOV(instruction.opcode)) { MOV_ROUTINES[instruction.opcode](vm, instruction.operand, instruction.reg); vm->registers.ret = instruction.operand.as_word; prog->ptr++; } else if (OPCODE_IS_POP(instruction.opcode)) { // NOTE: We use the `ret` register for the result of this pop data_t d = POP_ROUTINES[instruction.opcode](vm); vm->registers.ret = d.as_word; prog->ptr++; } else { // TODO: Error (Unknown opcode) return; } } #define ARR_SIZE(xs) (sizeof(xs) / sizeof(xs[0])) int main(void) { byte stack_data[256]; vm_t vm = {0}; vm_load_stack(&vm, stack_data, ARR_SIZE(stack_data)); return 0; }