/* Copyright (C) 2023 Aryadev Chavali * You may distribute and modify this code under the terms of the * GPLv2 license. You should have received a copy of the GPLv2 * license with this file. If not, please write to: * aryadev@aryadevchavali.com. * Created: 2023-10-15 * Author: Aryadev Chavali * Description: Implementation of bytecode for instructions */ #include #include #include #include "./inst.h" const char *opcode_as_cstr(opcode_t code) { switch (code) { case OP_NOOP: return "NOOP"; break; case OP_PUSH_BYTE: return "PUSH_BYTE"; break; case OP_PUSH_WORD: return "PUSH_WORD"; break; case OP_PUSH_HWORD: return "PUSH_HWORD"; break; case OP_PUSH_REGISTER_BYTE: return "PUSH_REGISTER_BYTE"; break; case OP_PUSH_REGISTER_WORD: return "PUSH_REGISTER_WORD"; break; case OP_PUSH_REGISTER_HWORD: return "PUSH_REGISTER_HWORD"; break; case OP_POP_BYTE: return "POP_BYTE"; break; case OP_POP_WORD: return "POP_WORD"; break; case OP_POP_HWORD: return "POP_HWORD"; break; case OP_MOV_BYTE: return "MOV_BYTE"; break; case OP_MOV_WORD: return "MOV_WORD"; break; case OP_MOV_HWORD: return "MOV_HWORD"; break; case OP_HALT: return "HALT"; break; } return ""; } void data_print(data_t datum, data_type_t type, FILE *fp) { switch (type) { case DATA_TYPE_NIL: break; case DATA_TYPE_BYTE: fprintf(fp, "%X", datum.as_byte); break; case DATA_TYPE_HWORD: fprintf(fp, "%d", datum.as_hword); break; case DATA_TYPE_WORD: fprintf(fp, "%lX", datum.as_word); break; } } data_type_t get_opcode_data_type(opcode_t opcode) { data_type_t type = DATA_TYPE_NIL; if (OPCODE_IS_TYPE(opcode, OP_PUSH)) type = (data_type_t)opcode; else if (OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER)) type = opcode >> 1; else if (OPCODE_IS_TYPE(opcode, OP_POP)) type = opcode >> 2; else if (OPCODE_IS_TYPE(opcode, OP_MOV)) type = opcode >> 3; return type; } void inst_print(inst_t instruction, FILE *fp) { fprintf(fp, "(%s", opcode_as_cstr(instruction.opcode)); if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH)) { data_type_t type = get_opcode_data_type(instruction.opcode); fprintf(fp, ", datum=0x"); data_print(instruction.operand, type, fp); } else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) || OPCODE_IS_TYPE(instruction.opcode, OP_MOV)) { fprintf(fp, ", reg=0x"); data_print(instruction.operand, DATA_TYPE_BYTE, fp); } fprintf(fp, ")"); } size_t inst_bytecode_size(inst_t inst) { size_t size = 1; // for opcode if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH)) { if (inst.opcode == OP_PUSH_BYTE) ++size; else if (inst.opcode == OP_PUSH_HWORD) size += sizeof(i32); else if (inst.opcode == OP_PUSH_WORD) size += sizeof(word); } else if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) || OPCODE_IS_TYPE(inst.opcode, OP_MOV)) // Only need a byte for the register ++size; else if (OPCODE_IS_TYPE(inst.opcode, OP_POP)) // No operand or register so leave as is {} return size; } void inst_write_bytecode(inst_t inst, darr_t *darr) { // Append opcode darr_append_byte(darr, inst.opcode); // Then append 0 or more operands data_type_t to_append = DATA_TYPE_NIL; if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH)) to_append = (data_type_t)inst.opcode; else if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) || OPCODE_IS_TYPE(inst.opcode, OP_MOV)) to_append = DATA_TYPE_BYTE; switch (to_append) { case DATA_TYPE_NIL: break; case DATA_TYPE_BYTE: darr_append_byte(darr, inst.operand.as_byte); break; case DATA_TYPE_HWORD: darr_append_bytes(darr, (byte *)&inst.operand.as_hword, sizeof(inst.operand.as_hword)); break; case DATA_TYPE_WORD: darr_append_bytes(darr, (byte *)&inst.operand.as_word, sizeof(inst.operand.as_word)); break; } } void insts_write_bytecode(inst_t *insts, size_t size, darr_t *darr) { for (size_t i = 0; i < size; ++i) inst_write_bytecode(insts[i], darr); } data_t read_type_from_darr(darr_t *darr, data_type_t type) { switch (type) { case DATA_TYPE_NIL: break; case DATA_TYPE_BYTE: if (darr->used >= darr->available) // TODO: Error (darr has no space left) return DBYTE(0); return DBYTE(darr->data[darr->used++]); break; case DATA_TYPE_HWORD: if (darr->used + HWORD_SIZE >= darr->available) // TODO: Error (darr has no space left) return DWORD(0); hword u = 0; memcpy(&u, darr->data + darr->used, sizeof(u)); darr->used += sizeof(u); return DHWORD(u); break; case DATA_TYPE_WORD: if (darr->used + sizeof(word) >= darr->available) // TODO: Error (darr has no space left) return DWORD(0); word w = 0; memcpy(&w, darr->data + darr->used, sizeof(w)); darr->used += sizeof(w); return DWORD(w); break; } // TODO: Error (unrecognised type) return DBYTE(0); } inst_t inst_read_bytecode(darr_t *darr) { if (darr->used >= darr->available) return (inst_t){0}; inst_t inst = {0}; opcode_t opcode = darr->data[darr->used++]; if (opcode > OP_HALT) // Translate to NOOP return inst; // Read operands if (OPCODE_IS_TYPE(opcode, OP_PUSH)) inst.operand = read_type_from_darr(darr, get_opcode_data_type(opcode)); // Read register (as a byte) else if (OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER) || OPCODE_IS_TYPE(opcode, OP_MOV)) inst.operand = read_type_from_darr(darr, DATA_TYPE_BYTE); // Otherwise opcode doesn't take operands inst.opcode = opcode; return inst; } inst_t *insts_read_bytecode(darr_t *bytes, size_t *ret_size) { *ret_size = 0; darr_t instructions = {0}; darr_init(&instructions, 0); while (bytes->used < bytes->available) { inst_t instruction = inst_read_bytecode(bytes); darr_append_bytes(&instructions, (byte *)&instruction, sizeof(instruction)); } *ret_size = instructions.used / sizeof(inst_t); return (inst_t *)instructions.data; } void insts_write_bytecode_file(inst_t *instructions, size_t size, FILE *fp) { darr_t darr = {0}; darr_init(&darr, 0); insts_write_bytecode(instructions, size, &darr); darr_write_file(&darr, fp); free(darr.data); } inst_t *insts_read_bytecode_file(FILE *fp, size_t *ret) { darr_t darr = darr_read_file(fp); inst_t *instructions = insts_read_bytecode(&darr, ret); free(darr.data); return instructions; }