This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
ovm/lib/inst.c
Aryadev Chavali eda49755bc Added instructions for allocating, setting, getting and deleting heap memory
One may allocate any number of (bytes|hwords|words), set or get some
index from allocated memory, and delete heap memory.

The idea is that all the relevant datums will be on the stack, so no
register usage.  This means no instructions should use register space
at all (other than POP, which I'm debating about currently).  Register
space is purely for users.
2023-11-01 21:38:52 +00:00

492 lines
12 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Implementation of bytecode for instructions
*/
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include "./inst.h"
const char *opcode_as_cstr(opcode_t code)
{
switch (code)
{
case OP_NOOP:
return "NOOP";
break;
case OP_PUSH_BYTE:
return "PUSH_BYTE";
break;
case OP_PUSH_WORD:
return "PUSH_WORD";
break;
case OP_PUSH_HWORD:
return "PUSH_HWORD";
break;
case OP_PUSH_REGISTER_BYTE:
return "PUSH_REGISTER_BYTE";
break;
case OP_PUSH_REGISTER_WORD:
return "PUSH_REGISTER_WORD";
break;
case OP_PUSH_REGISTER_HWORD:
return "PUSH_REGISTER_HWORD";
break;
case OP_POP_BYTE:
return "POP_BYTE";
break;
case OP_POP_WORD:
return "POP_WORD";
break;
case OP_POP_HWORD:
return "POP_HWORD";
break;
case OP_MOV_BYTE:
return "MOV_BYTE";
break;
case OP_MOV_WORD:
return "MOV_WORD";
break;
case OP_MOV_HWORD:
return "MOV_HWORD";
break;
case OP_DUP_BYTE:
return "DUP_BYTE";
break;
case OP_DUP_HWORD:
return "DUP_HWORD";
break;
case OP_DUP_WORD:
return "DUP_WORD";
break;
case OP_MALLOC_BYTE:
return "MALLOC_BYTE";
break;
case OP_MALLOC_HWORD:
return "MALLOC_HWORD";
break;
case OP_MALLOC_WORD:
return "MALLOC_WORD";
break;
case OP_MSET_BYTE:
return "MSET_BYTE";
break;
case OP_MSET_HWORD:
return "MSET_HWORD";
break;
case OP_MSET_WORD:
return "MSET_WORD";
break;
case OP_MGET_BYTE:
return "MGET_BYTE";
break;
case OP_MGET_HWORD:
return "MGET_HWORD";
break;
case OP_MGET_WORD:
return "MGET_WORD";
break;
case OP_MDELETE:
return "MDELETE";
break;
case OP_NOT_BYTE:
return "NOT_BYTE";
break;
case OP_NOT_HWORD:
return "NOT_HWORD";
break;
case OP_NOT_WORD:
return "NOT_WORD";
break;
case OP_OR_BYTE:
return "OR_BYTE";
break;
case OP_OR_HWORD:
return "OR_HWORD";
break;
case OP_OR_WORD:
return "OR_WORD";
break;
case OP_AND_BYTE:
return "AND_BYTE";
break;
case OP_AND_HWORD:
return "AND_HWORD";
break;
case OP_AND_WORD:
return "AND_WORD";
break;
case OP_XOR_BYTE:
return "XOR_BYTE";
break;
case OP_XOR_HWORD:
return "XOR_HWORD";
break;
case OP_XOR_WORD:
return "XOR_WORD";
break;
case OP_EQ_BYTE:
return "EQ_BYTE";
break;
case OP_EQ_HWORD:
return "EQ_HWORD";
break;
case OP_EQ_WORD:
return "EQ_WORD";
break;
case OP_LT_BYTE:
return "LT_BYTE";
break;
case OP_LT_CHAR:
return "LT_CHAR";
break;
case OP_LT_HWORD:
return "LT_HWORD";
break;
case OP_LT_INT:
return "LT_INT";
break;
case OP_LT_LONG:
return "LT_LONG";
break;
case OP_LT_WORD:
return "LT_WORD";
break;
case OP_LTE_BYTE:
return "LTE_BYTE";
break;
case OP_LTE_CHAR:
return "LTE_CHAR";
break;
case OP_LTE_HWORD:
return "LTE_HWORD";
break;
case OP_LTE_INT:
return "LTE_INT";
break;
case OP_LTE_LONG:
return "LTE_LONG";
break;
case OP_LTE_WORD:
return "LTE_WORD";
break;
case OP_GT_BYTE:
return "GT_BYTE";
break;
case OP_GT_CHAR:
return "GT_CHAR";
break;
case OP_GT_HWORD:
return "GT_HWORD";
break;
case OP_GT_INT:
return "GT_INT";
break;
case OP_GT_LONG:
return "GT_LONG";
break;
case OP_GT_WORD:
return "GT_WORD";
break;
case OP_GTE_BYTE:
return "GTE_BYTE";
break;
case OP_GTE_CHAR:
return "GTE_CHAR";
break;
case OP_GTE_HWORD:
return "GTE_HWORD";
break;
case OP_GTE_INT:
return "GTE_INT";
break;
case OP_GTE_LONG:
return "GTE_LONG";
break;
case OP_GTE_WORD:
return "GTE_WORD";
break;
case OP_PLUS_BYTE:
return "PLUS_BYTE";
break;
case OP_PLUS_HWORD:
return "PLUS_HWORD";
break;
case OP_PLUS_WORD:
return "PLUS_WORD";
case OP_MULT_BYTE:
return "MULT_BYTE";
break;
case OP_MULT_HWORD:
return "MULT_HWORD";
break;
case OP_MULT_WORD:
return "MULT_WORD";
break;
case OP_JUMP_ABS:
return "JUMP_ABS";
break;
case OP_JUMP_STACK:
return "JUMP_STACK";
break;
case OP_JUMP_REGISTER:
return "JUMP_REGISTER";
break;
case OP_JUMP_IF_BYTE:
return "JUMP_IF_BYTE";
break;
case OP_JUMP_IF_HWORD:
return "JUMP_IF_HWORD";
break;
case OP_JUMP_IF_WORD:
return "JUMP_IF_WORD";
break;
case OP_PRINT_CHAR:
return "PRINT_CHAR";
break;
case OP_PRINT_BYTE:
return "PRINT_BYTE";
break;
case OP_PRINT_INT:
return "PRINT_INT";
break;
case OP_PRINT_HWORD:
return "PRINT_HWORD";
break;
case OP_PRINT_LONG:
return "PRINT_LONG";
break;
case OP_PRINT_WORD:
return "PRINT_WORD";
break;
case OP_HALT:
return "HALT";
break;
case NUMBER_OF_OPCODES:
return "";
break;
}
return "";
}
void data_print(data_t datum, data_type_t type, FILE *fp)
{
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
fprintf(fp, "%X", datum.as_byte);
break;
case DATA_TYPE_HWORD:
fprintf(fp, "%X", datum.as_hword);
break;
case DATA_TYPE_WORD:
fprintf(fp, "%lX", datum.as_word);
break;
}
}
void inst_print(inst_t instruction, FILE *fp)
{
static_assert(NUMBER_OF_OPCODES == 83, "inst_bytecode_size: Out of date");
fprintf(fp, "%s(", opcode_as_cstr(instruction.opcode));
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
data_type_t type = (data_type_t)instruction.opcode;
fprintf(fp, "datum=0x");
data_print(instruction.operand, type, fp);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(instruction.opcode, OP_MOV) ||
instruction.opcode == OP_JUMP_REGISTER)
{
fprintf(fp, "reg=0x");
data_print(instruction.operand, DATA_TYPE_BYTE, fp);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_DUP) ||
OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) ||
OPCODE_IS_TYPE(instruction.opcode, OP_MSET) ||
OPCODE_IS_TYPE(instruction.opcode, OP_MGET))
{
fprintf(fp, "n=%lu", instruction.operand.as_word);
}
else if (instruction.opcode == OP_JUMP_ABS ||
OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF))
{
fprintf(fp, "address=0x");
data_print(instruction.operand, DATA_TYPE_WORD, fp);
}
fprintf(fp, ")");
}
size_t inst_bytecode_size(inst_t inst)
{
static_assert(NUMBER_OF_OPCODES == 83, "inst_bytecode_size: Out of date");
size_t size = 1; // for opcode
if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH))
{
if (inst.opcode == OP_PUSH_BYTE)
++size;
else if (inst.opcode == OP_PUSH_HWORD)
size += HWORD_SIZE;
else if (inst.opcode == OP_PUSH_WORD)
size += WORD_SIZE;
}
else if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(inst.opcode, OP_MOV) ||
OPCODE_IS_TYPE(inst.opcode, OP_DUP) ||
OPCODE_IS_TYPE(inst.opcode, OP_MALLOC) ||
OPCODE_IS_TYPE(inst.opcode, OP_MSET) ||
OPCODE_IS_TYPE(inst.opcode, OP_MGET) || inst.opcode == OP_JUMP_ABS ||
inst.opcode == OP_JUMP_REGISTER ||
OPCODE_IS_TYPE(inst.opcode, OP_JUMP_IF))
size += WORD_SIZE;
return size;
}
void inst_write_bytecode(inst_t inst, darr_t *darr)
{
static_assert(NUMBER_OF_OPCODES == 83, "inst_write_bytecode: Out of date");
// Append opcode
darr_append_byte(darr, inst.opcode);
// Then append 0 or more operands
data_type_t to_append = DATA_TYPE_NIL;
if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH))
to_append = (data_type_t)inst.opcode;
else if (OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(inst.opcode, OP_MOV) ||
OPCODE_IS_TYPE(inst.opcode, OP_DUP) ||
OPCODE_IS_TYPE(inst.opcode, OP_MALLOC) ||
OPCODE_IS_TYPE(inst.opcode, OP_MSET) ||
OPCODE_IS_TYPE(inst.opcode, OP_MGET) ||
inst.opcode == OP_JUMP_REGISTER || inst.opcode == OP_JUMP_ABS ||
OPCODE_IS_TYPE(inst.opcode, OP_JUMP_IF))
to_append = DATA_TYPE_WORD;
switch (to_append)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
darr_append_byte(darr, inst.operand.as_byte);
break;
case DATA_TYPE_HWORD:
darr_append_bytes(darr, (byte *)&inst.operand.as_hword, HWORD_SIZE);
break;
case DATA_TYPE_WORD:
darr_append_bytes(darr, (byte *)&inst.operand.as_word, WORD_SIZE);
break;
}
}
void insts_write_bytecode(inst_t *insts, size_t size, darr_t *darr)
{
for (size_t i = 0; i < size; ++i)
inst_write_bytecode(insts[i], darr);
}
data_t read_type_from_darr(darr_t *darr, data_type_t type)
{
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
if (darr->used > darr->available)
// TODO: Error (darr has no space left)
return DBYTE(0);
return DBYTE(darr->data[darr->used++]);
break;
case DATA_TYPE_HWORD:
if (darr->used + HWORD_SIZE > darr->available)
// TODO: Error (darr has no space left)
return DWORD(0);
hword u = 0;
memcpy(&u, darr->data + darr->used, HWORD_SIZE);
darr->used += HWORD_SIZE;
return DHWORD(u);
break;
case DATA_TYPE_WORD:
if (darr->used + WORD_SIZE > darr->available)
// TODO: Error (darr has no space left)
return DWORD(0);
word w = 0;
memcpy(&w, darr->data + darr->used, WORD_SIZE);
darr->used += WORD_SIZE;
return DWORD(w);
break;
}
// TODO: Error (unrecognised type)
return DBYTE(0);
}
inst_t inst_read_bytecode(darr_t *darr)
{
static_assert(NUMBER_OF_OPCODES == 83, "inst_read_bytecode: Out of date");
if (darr->used >= darr->available)
return (inst_t){0};
inst_t inst = {0};
opcode_t opcode = darr->data[darr->used++];
if (opcode > OP_HALT || opcode == NUMBER_OF_OPCODES || opcode < OP_NOOP)
return INST_NOOP;
// Read operands
if (OPCODE_IS_TYPE(opcode, OP_PUSH))
inst.operand = read_type_from_darr(darr, (data_type_t)opcode);
// Read register (as a byte)
else if (OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER) ||
OPCODE_IS_TYPE(opcode, OP_MOV) || opcode == OP_JUMP_REGISTER ||
OPCODE_IS_TYPE(opcode, OP_DUP) ||
OPCODE_IS_TYPE(opcode, OP_MALLOC) ||
OPCODE_IS_TYPE(opcode, OP_MSET) || OPCODE_IS_TYPE(opcode, OP_MGET) ||
opcode == OP_JUMP_ABS || OPCODE_IS_TYPE(opcode, OP_JUMP_IF))
inst.operand = read_type_from_darr(darr, DATA_TYPE_WORD);
// Otherwise opcode doesn't take operands
inst.opcode = opcode;
return inst;
}
inst_t *insts_read_bytecode(darr_t *bytes, size_t *ret_size)
{
*ret_size = 0;
// NOTE: Here we use the darr as a dynamic array of inst_t.
darr_t instructions = {0};
darr_init(&instructions, sizeof(inst_t));
while (bytes->used < bytes->available)
{
inst_t instruction = inst_read_bytecode(bytes);
darr_append_bytes(&instructions, (byte *)&instruction, sizeof(instruction));
}
*ret_size = instructions.used / sizeof(inst_t);
return (inst_t *)instructions.data;
}
void insts_write_bytecode_file(inst_t *instructions, size_t size, FILE *fp)
{
darr_t darr = {0};
darr_init(&darr, 0);
insts_write_bytecode(instructions, size, &darr);
darr_write_file(&darr, fp);
free(darr.data);
}
inst_t *insts_read_bytecode_file(FILE *fp, size_t *ret)
{
darr_t darr = darr_read_file(fp);
inst_t *instructions = insts_read_bytecode(&darr, ret);
free(darr.data);
return instructions;
}