This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
ovm/vm/runtime.c
Aryadev Chavali 90d901345a Added a routine to cleanup resources allocated to the VM
This means the stack should be heap allocated, which makes sense as
beyond 1KB one should really be using the heap rather than the stack.
2023-11-01 17:52:15 +00:00

741 lines
20 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./runtime.h"
const char *err_as_cstr(err_t err)
{
switch (err)
{
case ERR_OK:
return "OK";
break;
case ERR_STACK_UNDERFLOW:
return "STACK_UNDERFLOW";
break;
case ERR_STACK_OVERFLOW:
return "STACK_OVERFLOW";
break;
case ERR_INVALID_OPCODE:
return "INVALID_OPCODE";
break;
case ERR_INVALID_REGISTER_BYTE:
return "INVALID_REGISTER_BYTE";
break;
case ERR_INVALID_REGISTER_HWORD:
return "INVALID_REGISTER_HWORD";
break;
case ERR_INVALID_REGISTER_WORD:
return "INVALID_REGISTER_WORD";
break;
case ERR_INVALID_PROGRAM_ADDRESS:
return "INVALID_PROGRAM_ADDRESS";
case ERR_END_OF_PROGRAM:
return "END_OF_PROGRAM";
break;
default:
return "";
}
}
err_t vm_execute(vm_t *vm)
{
static_assert(NUMBER_OF_OPCODES == 70, "vm_execute: Out of date");
struct Program *prog = &vm->program;
if (prog->ptr >= prog->max)
return ERR_END_OF_PROGRAM;
inst_t instruction = prog->instructions[prog->ptr];
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
prog->ptr++;
return PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV) ||
OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER))
{
prog->ptr++;
return REG_ROUTINES[instruction.opcode](vm, instruction.operand.as_byte);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP))
{
// NOTE: We use the first register to hold the result of this pop
data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP);
prog->ptr++;
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
return vm_mov_byte(vm, 0);
break;
case DATA_TYPE_HWORD:
return vm_mov_hword(vm, 0);
break;
case DATA_TYPE_WORD:
return vm_mov_word(vm, 0);
break;
}
return ERR_OK;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_DUP))
{
prog->ptr++;
return DUP_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT) ||
OPCODE_IS_TYPE(instruction.opcode, OP_OR) ||
OPCODE_IS_TYPE(instruction.opcode, OP_AND) ||
OPCODE_IS_TYPE(instruction.opcode, OP_XOR) ||
OPCODE_IS_TYPE(instruction.opcode, OP_EQ) ||
OPCODE_IS_TYPE(instruction.opcode, OP_LT) ||
OPCODE_IS_TYPE(instruction.opcode, OP_LTE) ||
OPCODE_IS_TYPE(instruction.opcode, OP_GT) ||
OPCODE_IS_TYPE(instruction.opcode, OP_GTE) ||
OPCODE_IS_TYPE(instruction.opcode, OP_PLUS))
{
prog->ptr++;
return STACK_ROUTINES[instruction.opcode](vm);
}
else if (instruction.opcode == OP_JUMP_ABS)
return vm_jump(vm, instruction.operand.as_word);
else if (instruction.opcode == OP_JUMP_STACK)
{
// Set prog->ptr to the word on top of the stack
data_t ret = {0};
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
return vm_jump(vm, ret.as_word);
}
else if (instruction.opcode == OP_JUMP_REGISTER)
{
if (instruction.operand.as_word >= vm->registers.available)
return ERR_INVALID_REGISTER_WORD;
word addr = vm->registers.data[instruction.operand.as_word];
return vm_jump(vm, addr);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF))
{
data_t datum = {0};
err_t err = ERR_OK;
if (instruction.opcode == OP_JUMP_IF_BYTE)
err = vm_pop_byte(vm, &datum);
else if (instruction.opcode == OP_JUMP_IF_HWORD)
err = vm_pop_hword(vm, &datum);
else if (instruction.opcode == OP_JUMP_IF_WORD)
err = vm_pop_word(vm, &datum);
if (err)
return err;
// If datum != 0 then jump, else go to the next instruction
if (datum.as_word != 0)
return vm_jump(vm, instruction.operand.as_word);
else
++prog->ptr;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PRINT))
{
data_t datum = {0};
enum
{
TYPE_BYTE,
TYPE_CHAR,
TYPE_INT,
TYPE_HWORD,
TYPE_LONG,
TYPE_WORD
} print_type;
err_t err = ERR_OK;
if (instruction.opcode == OP_PRINT_BYTE ||
instruction.opcode == OP_PRINT_CHAR)
{
print_type = instruction.opcode == OP_PRINT_BYTE ? TYPE_BYTE : TYPE_CHAR;
err = vm_pop_byte(vm, &datum);
}
else if (instruction.opcode == OP_PRINT_HWORD ||
instruction.opcode == OP_PRINT_INT)
{
print_type = instruction.opcode == OP_PRINT_HWORD ? TYPE_HWORD : TYPE_INT;
err = vm_pop_hword(vm, &datum);
}
else if (instruction.opcode == OP_PRINT_WORD ||
instruction.opcode == OP_PRINT_LONG)
{
print_type = instruction.opcode == OP_PRINT_WORD ? TYPE_WORD : TYPE_LONG;
err = vm_pop_word(vm, &datum);
}
if (err)
return err;
switch (print_type)
{
case TYPE_CHAR: {
printf("%c", datum.as_char);
break;
}
case TYPE_BYTE:
printf("0x%x", datum.as_byte);
break;
case TYPE_INT: {
printf(
#if PRINT_HEX == 1
"0x%X",
#else
"%" PRId32,
#endif
datum.as_int);
break;
}
case TYPE_HWORD:
printf(
#if PRINT_HEX == 1
"0x%X",
#else
"%" PRIu32,
#endif
datum.as_hword);
break;
case TYPE_LONG: {
printf(
#if PRINT_HEX == 1
"0x%dX",
#else
"%" PRId64,
#endif
datum.as_long);
break;
}
case TYPE_WORD:
printf(
#if PRINT_HEX == 1
"0x%lX",
#else
"%" PRIu64,
#endif
datum.as_word);
break;
}
prog->ptr++;
}
else if (instruction.opcode == OP_HALT)
{
// Do nothing here. Should be caught by callers of vm_execute
}
else
return ERR_INVALID_OPCODE;
return ERR_OK;
}
err_t vm_execute_all(vm_t *vm)
{
struct Program *program = &vm->program;
err_t err = ERR_OK;
#if VERBOSE >= 1
size_t cycles = 0;
#endif
#if VERBOSE >= 2
registers_t prev_registers = vm->registers;
size_t prev_sptr = 0;
#endif
while (program->instructions[program->ptr].opcode != OP_HALT &&
program->ptr < program->max)
{
#if VERBOSE >= 2
fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
vm_print_program(vm, stdout);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0)
{
vm_print_registers(vm, stdout);
prev_registers = vm->registers;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
if (prev_sptr != vm->stack.ptr)
{
vm_print_stack(vm, stdout);
prev_sptr = vm->stack.ptr;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
#endif
#if VERBOSE >= 1
++cycles;
#endif
err = vm_execute(vm);
if (err)
return err;
}
#if VERBOSE >= 1
fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n",
TERM_YELLOW, TERM_RESET, cycles);
vm_print_all(vm, stdout);
#endif
return err;
}
void vm_load_stack(vm_t *vm, byte *bytes, size_t size)
{
vm->stack.data = bytes;
vm->stack.max = size;
vm->stack.ptr = 0;
}
void vm_load_program(vm_t *vm, inst_t *instructions, size_t size)
{
vm->program.instructions = instructions;
vm->program.max = size;
vm->program.ptr = 0;
}
void vm_load_registers(vm_t *vm, registers_t registers)
{
vm->registers = registers;
}
void vm_stop(vm_t *vm)
{
free(vm->registers.data);
free(vm->program.instructions);
free(vm->stack.data);
}
void vm_print_registers(vm_t *vm, FILE *fp)
{
registers_t reg = vm->registers;
fprintf(fp, "Registers.used = %luB\nRegisters.available = %luB\n",
vm->registers.used, vm->registers.available);
fprintf(fp, "Registers.reg = [");
for (size_t i = 0; i <= (reg.used / WORD_SIZE); ++i)
{
fprintf(fp, "{%lu:%lX}", i, VM_NTH_REGISTER(reg, i));
if (i != reg.used - 1)
fprintf(fp, ", ");
}
fprintf(fp, "]\n");
}
void vm_print_stack(vm_t *vm, FILE *fp)
{
struct Stack stack = vm->stack;
fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max,
stack.ptr);
if (stack.ptr == 0)
{
fprintf(fp, "]\n");
return;
}
printf("\n");
for (size_t i = stack.ptr; i > 0; --i)
{
byte b = stack.data[i - 1];
fprintf(fp, "\t%lu: %X", stack.ptr - i, b);
if (i != 1)
fprintf(fp, ", ");
fprintf(fp, "\n");
}
fprintf(fp, "]\n");
}
void vm_print_program(vm_t *vm, FILE *fp)
{
struct Program program = vm->program;
fprintf(fp,
"Program.max = %lu\nProgram.ptr = "
"%lu\nProgram.instructions = [\n",
program.max, program.ptr);
size_t beg = 0;
if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT)
{
fprintf(fp, "\t...\n");
beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT;
}
else
beg = 0;
size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max);
for (size_t i = beg; i < end; ++i)
{
fprintf(fp, "\t%lu: ", i);
inst_print(program.instructions[i], fp);
if (i == program.ptr)
fprintf(fp, " <---");
fprintf(fp, "\n");
}
if (end != program.max)
fprintf(fp, "\t...\n");
fprintf(fp, "]\n");
}
void vm_print_all(vm_t *vm, FILE *fp)
{
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_program(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_registers(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_stack(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
}
err_t vm_jump(vm_t *vm, word w)
{
if (w >= vm->program.max)
return ERR_INVALID_PROGRAM_ADDRESS;
vm->program.ptr = w;
return ERR_OK;
}
err_t vm_push_byte(vm_t *vm, data_t b)
{
if (vm->stack.ptr >= vm->stack.max)
return ERR_STACK_OVERFLOW;
vm->stack.data[vm->stack.ptr++] = b.as_byte;
return ERR_OK;
}
err_t vm_push_hword(vm_t *vm, data_t f)
{
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
return ERR_STACK_OVERFLOW;
byte bytes[HWORD_SIZE] = {0};
convert_hword_to_bytes(f.as_hword, bytes);
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
byte b = bytes[HWORD_SIZE - i - 1];
vm_push_byte(vm, DBYTE(b));
}
return ERR_OK;
}
err_t vm_push_word(vm_t *vm, data_t w)
{
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
return ERR_STACK_OVERFLOW;
byte bytes[WORD_SIZE] = {0};
convert_word_to_bytes(w.as_word, bytes);
for (size_t i = 0; i < WORD_SIZE; ++i)
{
byte b = bytes[WORD_SIZE - i - 1];
vm_push_byte(vm, DBYTE(b));
}
return ERR_OK;
}
err_t vm_push_byte_register(vm_t *vm, word reg)
{
if (reg > vm->registers.used)
return ERR_INVALID_REGISTER_BYTE;
// Interpret each word based register as 8 byte registers
byte b = vm->registers.data[reg];
return vm_push_byte(vm, DBYTE(b));
}
err_t vm_push_hword_register(vm_t *vm, word reg)
{
if (reg > (vm->registers.used / HWORD_SIZE))
return ERR_INVALID_REGISTER_HWORD;
// Interpret the bytes at point reg * HWORD_SIZE as an hword
hword hw = *(hword *)(vm->registers.data + (reg * HWORD_SIZE));
return vm_push_hword(vm, DHWORD(hw));
}
err_t vm_push_word_register(vm_t *vm, word reg)
{
if (reg > (vm->registers.used / WORD_SIZE))
return ERR_INVALID_REGISTER_WORD;
return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg)));
}
err_t vm_mov_byte(vm_t *vm, word reg)
{
if (reg >= vm->registers.used)
{
// Expand capacity
darr_ensure_capacity(&vm->registers, reg - vm->registers.used);
vm->registers.used = MAX(vm->registers.used, reg + 1);
}
data_t ret = {0};
err_t err = vm_pop_byte(vm, &ret);
if (err)
return err;
vm->registers.data[reg] = ret.as_byte;
return ERR_OK;
}
err_t vm_mov_hword(vm_t *vm, word reg)
{
if (reg >= (vm->registers.used / HWORD_SIZE))
{
// Expand capacity till we can ensure that this is a valid
// register to use
// Number of hwords needed ontop of what is allocated:
const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE));
// Number of bytes needed ontop of what is allocated
const size_t diff = (hwords + 1) * HWORD_SIZE;
darr_ensure_capacity(&vm->registers, diff);
vm->registers.used = MAX(vm->registers.used, (reg * HWORD_SIZE) + 1);
}
data_t ret = {0};
err_t err = vm_pop_hword(vm, &ret);
if (err)
return err;
// Here we treat vm->registers as a set of hwords
hword *hword_ptr = (hword *)(vm->registers.data + (reg * HWORD_SIZE));
*hword_ptr = ret.as_hword;
return ERR_OK;
}
err_t vm_mov_word(vm_t *vm, word reg)
{
if (reg >= (vm->registers.used / WORD_SIZE))
{
// Number of hwords needed ontop of what is allocated:
const size_t words = (reg - (vm->registers.used / WORD_SIZE));
// Number of bytes needed ontop of what is allocated
const size_t diff = (words + 1) * WORD_SIZE;
darr_ensure_capacity(&vm->registers, diff);
vm->registers.used = MAX(vm->registers.used, (reg * WORD_SIZE) + 1);
}
else if (vm->stack.ptr < sizeof(word))
return ERR_STACK_UNDERFLOW;
data_t ret = {0};
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
VM_NTH_REGISTER(vm->registers, reg) = ret.as_word;
return ERR_OK;
}
err_t vm_dup_byte(vm_t *vm, word w)
{
if (vm->stack.ptr < w + 1)
return ERR_STACK_UNDERFLOW;
return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w]));
}
err_t vm_dup_hword(vm_t *vm, word w)
{
if (vm->stack.ptr < HWORD_SIZE * (w + 1))
return ERR_STACK_UNDERFLOW;
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
bytes[HWORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i];
return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes)));
}
err_t vm_dup_word(vm_t *vm, word w)
{
if (vm->stack.ptr < WORD_SIZE * (w + 1))
return ERR_STACK_UNDERFLOW;
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
bytes[WORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i];
return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes)));
}
err_t vm_pop_byte(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr == 0)
return ERR_STACK_UNDERFLOW;
*ret = DBYTE(vm->stack.data[--vm->stack.ptr]);
return ERR_OK;
}
err_t vm_pop_hword(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr < HWORD_SIZE)
return ERR_STACK_UNDERFLOW;
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
data_t b = {0};
vm_pop_byte(vm, &b);
bytes[i] = b.as_byte;
}
*ret = DWORD(convert_bytes_to_hword(bytes));
return ERR_OK;
}
err_t vm_pop_word(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr < WORD_SIZE)
return ERR_STACK_UNDERFLOW;
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
{
data_t b = {0};
vm_pop_byte(vm, &b);
bytes[i] = b.as_byte;
}
*ret = DWORD(convert_bytes_to_word(bytes));
return ERR_OK;
}
#define VM_NOT_TYPE(TYPEL, TYPEU) \
err_t vm_not_##TYPEL(vm_t *vm) \
{ \
data_t a = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \
}
VM_NOT_TYPE(byte, BYTE)
VM_NOT_TYPE(hword, HWORD)
VM_NOT_TYPE(word, WORD)
#define VM_BITWISE_TYPE(COMPNAME, COMP, TYPEL, TYPEU) \
err_t vm_##COMPNAME##_##TYPEL(vm_t *vm) \
{ \
data_t a = {0}, b = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
err = vm_pop_##TYPEL(vm, &b); \
if (err) \
return err; \
return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \
}
#define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL) \
err_t vm_##COMPNAME##_##GETL(vm_t *vm) \
{ \
data_t a = {0}, b = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
err = vm_pop_##TYPEL(vm, &b); \
if (err) \
return err; \
return vm_push_byte(vm, DBYTE(a.as_##GETL COMP b.as_##GETL)); \
}
VM_BITWISE_TYPE(or, |, byte, BYTE)
VM_BITWISE_TYPE(or, |, hword, HWORD)
VM_BITWISE_TYPE(or, |, word, WORD)
VM_BITWISE_TYPE(and, &, byte, BYTE)
VM_BITWISE_TYPE(and, &, hword, HWORD)
VM_BITWISE_TYPE(and, &, word, WORD)
VM_BITWISE_TYPE(xor, ^, byte, BYTE)
VM_BITWISE_TYPE(xor, ^, hword, HWORD)
VM_BITWISE_TYPE(xor, ^, word, WORD)
VM_COMPARATOR_TYPE(eq, ==, byte, byte)
VM_COMPARATOR_TYPE(eq, ==, byte, char)
VM_COMPARATOR_TYPE(eq, ==, hword, hword)
VM_COMPARATOR_TYPE(eq, ==, hword, int)
VM_COMPARATOR_TYPE(eq, ==, word, word)
VM_COMPARATOR_TYPE(eq, ==, word, long)
VM_COMPARATOR_TYPE(lt, <, byte, byte)
VM_COMPARATOR_TYPE(lt, <, byte, char)
VM_COMPARATOR_TYPE(lt, <, hword, hword)
VM_COMPARATOR_TYPE(lt, <, hword, int)
VM_COMPARATOR_TYPE(lt, <, word, word)
VM_COMPARATOR_TYPE(lt, <, word, long)
VM_COMPARATOR_TYPE(lte, <=, byte, byte)
VM_COMPARATOR_TYPE(lte, <=, byte, char)
VM_COMPARATOR_TYPE(lte, <=, hword, hword)
VM_COMPARATOR_TYPE(lte, <=, hword, int)
VM_COMPARATOR_TYPE(lte, <=, word, word)
VM_COMPARATOR_TYPE(lte, <=, word, long)
VM_COMPARATOR_TYPE(gt, >, byte, byte)
VM_COMPARATOR_TYPE(gt, >, byte, char)
VM_COMPARATOR_TYPE(gt, >, hword, hword)
VM_COMPARATOR_TYPE(gt, >, hword, int)
VM_COMPARATOR_TYPE(gt, >, word, word)
VM_COMPARATOR_TYPE(gt, >, word, long)
VM_COMPARATOR_TYPE(gte, >=, byte, byte)
VM_COMPARATOR_TYPE(gte, >=, byte, char)
VM_COMPARATOR_TYPE(gte, >=, hword, hword)
VM_COMPARATOR_TYPE(gte, >=, hword, int)
VM_COMPARATOR_TYPE(gte, >=, word, word)
VM_COMPARATOR_TYPE(gte, >=, word, long)
err_t vm_plus_byte(vm_t *vm)
{
data_t a = {0}, b = {0};
err_t err = vm_pop_byte(vm, &a);
if (err)
return err;
err = vm_pop_byte(vm, &b);
if (err)
return err;
return vm_push_byte(vm, DBYTE(a.as_byte + b.as_byte));
}
err_t vm_plus_hword(vm_t *vm)
{
data_t a = {0}, b = {0};
err_t err = vm_pop_hword(vm, &a);
if (err)
return err;
err = vm_pop_hword(vm, &b);
if (err)
return err;
return vm_push_hword(vm, DHWORD(a.as_hword + b.as_hword));
}
err_t vm_plus_word(vm_t *vm)
{
data_t a = {0}, b = {0};
err_t err = vm_pop_word(vm, &a);
if (err)
return err;
err = vm_pop_word(vm, &b);
if (err)
return err;
return vm_push_word(vm, DWORD(a.as_word + b.as_word));
}