This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
ovm/vm/runtime.h
Aryadev Chavali 7a1129d80f VM registers are now a dynamic array
Stack based machines generally need "variable space".  This may be
quite via a symbol-to-word association a list, a hashmap, or some
other system.  Here I decide to go for the simplest: extending the
register system to a dynamic/infinite number of them.  This means, in
practice, that we may use a theoretically infinite number of indexed
words, hwords and bytes to act as variable space.  This means that the
onus is on those who are targeting this virtual machine to create
their own association system to create syntactic variables: all the
machinery is technically installed within the VM, without the veneer
that causes extra cruft.
2023-11-01 17:49:33 +00:00

209 lines
5.4 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#ifndef RUNTIME_H
#define RUNTIME_H
#include <stdio.h>
#include <stdlib.h>
#include <lib/inst.h>
typedef enum
{
ERR_OK = 0,
ERR_STACK_UNDERFLOW,
ERR_STACK_OVERFLOW,
ERR_INVALID_OPCODE,
ERR_INVALID_REGISTER_BYTE,
ERR_INVALID_REGISTER_HWORD,
ERR_INVALID_REGISTER_WORD,
ERR_INVALID_PROGRAM_ADDRESS,
ERR_END_OF_PROGRAM,
} err_t;
const char *err_as_cstr(err_t);
typedef darr_t registers_t;
#define VM_NTH_REGISTER(REGISTERS, N) (((word *)((REGISTERS).data))[N])
#define VM_REGISTERS_AVAILABLE(REGISTERS) (((REGISTERS).available) / WORD_SIZE)
typedef struct
{
registers_t registers;
struct Stack
{
byte *data;
word ptr, max;
} stack;
struct Program
{
inst_t *instructions;
word ptr, max;
} program;
} vm_t;
err_t vm_execute(vm_t *);
err_t vm_execute_all(vm_t *);
void vm_load_stack(vm_t *, byte *, size_t);
void vm_load_program(vm_t *, inst_t *, size_t);
void vm_load_registers(vm_t *, registers_t);
// Print routines
#define VM_PRINT_PROGRAM_EXCERPT 5
void vm_print_registers(vm_t *, FILE *);
void vm_print_stack(vm_t *, FILE *);
void vm_print_program(vm_t *, FILE *);
void vm_print_all(vm_t *, FILE *);
// Execution routines
err_t vm_jump(vm_t *, word);
err_t vm_pop_byte(vm_t *, data_t *);
err_t vm_pop_hword(vm_t *, data_t *);
err_t vm_pop_word(vm_t *, data_t *);
err_t vm_push_byte(vm_t *, data_t);
err_t vm_push_hword(vm_t *, data_t);
err_t vm_push_word(vm_t *, data_t);
typedef err_t (*push_f)(vm_t *, data_t);
static const push_f PUSH_ROUTINES[] = {
[OP_PUSH_BYTE] = vm_push_byte,
[OP_PUSH_HWORD] = vm_push_hword,
[OP_PUSH_WORD] = vm_push_word,
};
err_t vm_push_byte_register(vm_t *, word);
err_t vm_push_hword_register(vm_t *, word);
err_t vm_push_word_register(vm_t *, word);
err_t vm_mov_byte(vm_t *, word);
err_t vm_mov_hword(vm_t *, word);
err_t vm_mov_word(vm_t *, word);
typedef err_t (*reg_f)(vm_t *, word);
static const reg_f REG_ROUTINES[] = {
[OP_PUSH_REGISTER_BYTE] = vm_push_byte_register,
[OP_PUSH_REGISTER_HWORD] = vm_push_hword_register,
[OP_PUSH_REGISTER_WORD] = vm_push_word_register,
[OP_MOV_BYTE] = vm_mov_byte,
[OP_MOV_HWORD] = vm_mov_hword,
[OP_MOV_WORD] = vm_mov_word,
};
err_t vm_dup_byte(vm_t *, word);
err_t vm_dup_hword(vm_t *, word);
err_t vm_dup_word(vm_t *, word);
typedef err_t (*dup_f)(vm_t *, word);
static const dup_f DUP_ROUTINES[] = {
[OP_DUP_BYTE] = vm_dup_byte,
[OP_DUP_HWORD] = vm_dup_hword,
[OP_DUP_WORD] = vm_dup_word,
};
err_t vm_not_byte(vm_t *);
err_t vm_not_hword(vm_t *);
err_t vm_not_word(vm_t *);
err_t vm_or_byte(vm_t *);
err_t vm_or_hword(vm_t *);
err_t vm_or_word(vm_t *);
err_t vm_and_byte(vm_t *);
err_t vm_and_hword(vm_t *);
err_t vm_and_word(vm_t *);
err_t vm_xor_byte(vm_t *);
err_t vm_xor_hword(vm_t *);
err_t vm_xor_word(vm_t *);
err_t vm_eq_byte(vm_t *);
err_t vm_eq_char(vm_t *);
err_t vm_eq_int(vm_t *);
err_t vm_eq_hword(vm_t *);
err_t vm_eq_long(vm_t *);
err_t vm_eq_word(vm_t *);
err_t vm_lt_byte(vm_t *);
err_t vm_lt_char(vm_t *);
err_t vm_lt_int(vm_t *);
err_t vm_lt_hword(vm_t *);
err_t vm_lt_long(vm_t *);
err_t vm_lt_word(vm_t *);
err_t vm_lte_byte(vm_t *);
err_t vm_lte_char(vm_t *);
err_t vm_lte_int(vm_t *);
err_t vm_lte_hword(vm_t *);
err_t vm_lte_long(vm_t *);
err_t vm_lte_word(vm_t *);
err_t vm_gt_byte(vm_t *);
err_t vm_gt_char(vm_t *);
err_t vm_gt_int(vm_t *);
err_t vm_gt_hword(vm_t *);
err_t vm_gt_long(vm_t *);
err_t vm_gt_word(vm_t *);
err_t vm_gte_byte(vm_t *);
err_t vm_gte_char(vm_t *);
err_t vm_gte_int(vm_t *);
err_t vm_gte_hword(vm_t *);
err_t vm_gte_long(vm_t *);
err_t vm_gte_word(vm_t *);
err_t vm_plus_byte(vm_t *);
err_t vm_plus_hword(vm_t *);
err_t vm_plus_word(vm_t *);
typedef err_t (*stack_f)(vm_t *);
static const stack_f STACK_ROUTINES[] = {
[OP_NOT_BYTE] = vm_not_byte, [OP_NOT_HWORD] = vm_not_hword,
[OP_NOT_WORD] = vm_not_word,
[OP_OR_BYTE] = vm_or_byte, [OP_OR_HWORD] = vm_or_hword,
[OP_OR_WORD] = vm_or_word,
[OP_AND_BYTE] = vm_and_byte, [OP_AND_HWORD] = vm_and_hword,
[OP_AND_WORD] = vm_and_word,
[OP_XOR_BYTE] = vm_xor_byte, [OP_XOR_HWORD] = vm_xor_hword,
[OP_XOR_WORD] = vm_xor_word,
[OP_EQ_BYTE] = vm_eq_byte, [OP_EQ_HWORD] = vm_eq_hword,
[OP_EQ_WORD] = vm_eq_word,
[OP_LT_BYTE] = vm_lt_byte, [OP_LT_CHAR] = vm_lt_char,
[OP_LT_INT] = vm_lt_int, [OP_LT_HWORD] = vm_lt_hword,
[OP_LT_LONG] = vm_lt_long, [OP_LT_WORD] = vm_lt_word,
[OP_LTE_BYTE] = vm_lte_byte, [OP_LTE_CHAR] = vm_lte_char,
[OP_LTE_INT] = vm_lte_int, [OP_LTE_HWORD] = vm_lte_hword,
[OP_LTE_LONG] = vm_lte_long, [OP_LTE_WORD] = vm_lte_word,
[OP_GT_BYTE] = vm_gt_byte, [OP_GT_CHAR] = vm_gt_char,
[OP_GT_INT] = vm_gt_int, [OP_GT_HWORD] = vm_gt_hword,
[OP_GT_LONG] = vm_gt_long, [OP_GT_WORD] = vm_gt_word,
[OP_GTE_BYTE] = vm_gte_byte, [OP_GTE_CHAR] = vm_gte_char,
[OP_GTE_INT] = vm_gte_int, [OP_GTE_HWORD] = vm_gte_hword,
[OP_GTE_LONG] = vm_gte_long, [OP_GTE_WORD] = vm_gte_word,
[OP_PLUS_BYTE] = vm_plus_byte, [OP_PLUS_HWORD] = vm_plus_hword,
[OP_PLUS_WORD] = vm_plus_word,
};
#endif