This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
ovm/vm/runtime.c
Aryadev Chavali 081661cb6b Fixed bug with comparators where all results were flipped
This is because: say we have {a, b} where a is on top of the stack.  A
comparator C applies in the order C(b, a) i.e. b `C` a.  The previous
version did a `C` b which was wrong.
2023-11-01 17:52:58 +00:00

741 lines
20 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./runtime.h"
const char *err_as_cstr(err_t err)
{
switch (err)
{
case ERR_OK:
return "OK";
break;
case ERR_STACK_UNDERFLOW:
return "STACK_UNDERFLOW";
break;
case ERR_STACK_OVERFLOW:
return "STACK_OVERFLOW";
break;
case ERR_INVALID_OPCODE:
return "INVALID_OPCODE";
break;
case ERR_INVALID_REGISTER_BYTE:
return "INVALID_REGISTER_BYTE";
break;
case ERR_INVALID_REGISTER_HWORD:
return "INVALID_REGISTER_HWORD";
break;
case ERR_INVALID_REGISTER_WORD:
return "INVALID_REGISTER_WORD";
break;
case ERR_INVALID_PROGRAM_ADDRESS:
return "INVALID_PROGRAM_ADDRESS";
case ERR_END_OF_PROGRAM:
return "END_OF_PROGRAM";
break;
default:
return "";
}
}
err_t vm_execute(vm_t *vm)
{
static_assert(NUMBER_OF_OPCODES == 70, "vm_execute: Out of date");
struct Program *prog = &vm->program;
if (prog->ptr >= prog->max)
return ERR_END_OF_PROGRAM;
inst_t instruction = prog->instructions[prog->ptr];
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
prog->ptr++;
return PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV) ||
OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER))
{
prog->ptr++;
return REG_ROUTINES[instruction.opcode](vm, instruction.operand.as_byte);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP))
{
// NOTE: We use the first register to hold the result of this pop
data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP);
prog->ptr++;
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
return vm_mov_byte(vm, 0);
break;
case DATA_TYPE_HWORD:
return vm_mov_hword(vm, 0);
break;
case DATA_TYPE_WORD:
return vm_mov_word(vm, 0);
break;
}
return ERR_OK;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_DUP))
{
prog->ptr++;
return DUP_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT) ||
OPCODE_IS_TYPE(instruction.opcode, OP_OR) ||
OPCODE_IS_TYPE(instruction.opcode, OP_AND) ||
OPCODE_IS_TYPE(instruction.opcode, OP_XOR) ||
OPCODE_IS_TYPE(instruction.opcode, OP_EQ) ||
OPCODE_IS_TYPE(instruction.opcode, OP_LT) ||
OPCODE_IS_TYPE(instruction.opcode, OP_LTE) ||
OPCODE_IS_TYPE(instruction.opcode, OP_GT) ||
OPCODE_IS_TYPE(instruction.opcode, OP_GTE) ||
OPCODE_IS_TYPE(instruction.opcode, OP_PLUS))
{
prog->ptr++;
return STACK_ROUTINES[instruction.opcode](vm);
}
else if (instruction.opcode == OP_JUMP_ABS)
return vm_jump(vm, instruction.operand.as_word);
else if (instruction.opcode == OP_JUMP_STACK)
{
// Set prog->ptr to the word on top of the stack
data_t ret = {0};
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
return vm_jump(vm, ret.as_word);
}
else if (instruction.opcode == OP_JUMP_REGISTER)
{
if (instruction.operand.as_word >= vm->registers.available)
return ERR_INVALID_REGISTER_WORD;
word addr = vm->registers.data[instruction.operand.as_word];
return vm_jump(vm, addr);
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF))
{
data_t datum = {0};
err_t err = ERR_OK;
if (instruction.opcode == OP_JUMP_IF_BYTE)
err = vm_pop_byte(vm, &datum);
else if (instruction.opcode == OP_JUMP_IF_HWORD)
err = vm_pop_hword(vm, &datum);
else if (instruction.opcode == OP_JUMP_IF_WORD)
err = vm_pop_word(vm, &datum);
if (err)
return err;
// If datum != 0 then jump, else go to the next instruction
if (datum.as_word != 0)
return vm_jump(vm, instruction.operand.as_word);
else
++prog->ptr;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PRINT))
{
data_t datum = {0};
enum
{
TYPE_BYTE,
TYPE_CHAR,
TYPE_INT,
TYPE_HWORD,
TYPE_LONG,
TYPE_WORD
} print_type;
err_t err = ERR_OK;
if (instruction.opcode == OP_PRINT_BYTE ||
instruction.opcode == OP_PRINT_CHAR)
{
print_type = instruction.opcode == OP_PRINT_BYTE ? TYPE_BYTE : TYPE_CHAR;
err = vm_pop_byte(vm, &datum);
}
else if (instruction.opcode == OP_PRINT_HWORD ||
instruction.opcode == OP_PRINT_INT)
{
print_type = instruction.opcode == OP_PRINT_HWORD ? TYPE_HWORD : TYPE_INT;
err = vm_pop_hword(vm, &datum);
}
else if (instruction.opcode == OP_PRINT_WORD ||
instruction.opcode == OP_PRINT_LONG)
{
print_type = instruction.opcode == OP_PRINT_WORD ? TYPE_WORD : TYPE_LONG;
err = vm_pop_word(vm, &datum);
}
if (err)
return err;
switch (print_type)
{
case TYPE_CHAR: {
printf("%c", datum.as_char);
break;
}
case TYPE_BYTE:
printf("0x%x", datum.as_byte);
break;
case TYPE_INT: {
printf(
#if PRINT_HEX == 1
"0x%X",
#else
"%" PRId32,
#endif
datum.as_int);
break;
}
case TYPE_HWORD:
printf(
#if PRINT_HEX == 1
"0x%X",
#else
"%" PRIu32,
#endif
datum.as_hword);
break;
case TYPE_LONG: {
printf(
#if PRINT_HEX == 1
"0x%dX",
#else
"%" PRId64,
#endif
datum.as_long);
break;
}
case TYPE_WORD:
printf(
#if PRINT_HEX == 1
"0x%lX",
#else
"%" PRIu64,
#endif
datum.as_word);
break;
}
prog->ptr++;
}
else if (instruction.opcode == OP_HALT)
{
// Do nothing here. Should be caught by callers of vm_execute
}
else
return ERR_INVALID_OPCODE;
return ERR_OK;
}
err_t vm_execute_all(vm_t *vm)
{
struct Program *program = &vm->program;
err_t err = ERR_OK;
#if VERBOSE >= 1
size_t cycles = 0;
#endif
#if VERBOSE >= 2
registers_t prev_registers = vm->registers;
size_t prev_sptr = 0;
#endif
while (program->instructions[program->ptr].opcode != OP_HALT &&
program->ptr < program->max)
{
#if VERBOSE >= 2
fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
vm_print_program(vm, stdout);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0)
{
vm_print_registers(vm, stdout);
prev_registers = vm->registers;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
if (prev_sptr != vm->stack.ptr)
{
vm_print_stack(vm, stdout);
prev_sptr = vm->stack.ptr;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
#endif
#if VERBOSE >= 1
++cycles;
#endif
err = vm_execute(vm);
if (err)
return err;
}
#if VERBOSE >= 1
fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n",
TERM_YELLOW, TERM_RESET, cycles);
vm_print_all(vm, stdout);
#endif
return err;
}
void vm_load_stack(vm_t *vm, byte *bytes, size_t size)
{
vm->stack.data = bytes;
vm->stack.max = size;
vm->stack.ptr = 0;
}
void vm_load_program(vm_t *vm, inst_t *instructions, size_t size)
{
vm->program.instructions = instructions;
vm->program.max = size;
vm->program.ptr = 0;
}
void vm_load_registers(vm_t *vm, registers_t registers)
{
vm->registers = registers;
}
void vm_stop(vm_t *vm)
{
free(vm->registers.data);
free(vm->program.instructions);
free(vm->stack.data);
}
void vm_print_registers(vm_t *vm, FILE *fp)
{
registers_t reg = vm->registers;
fprintf(fp, "Registers.used = %luB\nRegisters.available = %luB\n",
vm->registers.used, vm->registers.available);
fprintf(fp, "Registers.reg = [");
for (size_t i = 0; i <= (reg.used / WORD_SIZE); ++i)
{
fprintf(fp, "{%lu:%lX}", i, VM_NTH_REGISTER(reg, i));
if (i != reg.used - 1)
fprintf(fp, ", ");
}
fprintf(fp, "]\n");
}
void vm_print_stack(vm_t *vm, FILE *fp)
{
struct Stack stack = vm->stack;
fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max,
stack.ptr);
if (stack.ptr == 0)
{
fprintf(fp, "]\n");
return;
}
printf("\n");
for (size_t i = stack.ptr; i > 0; --i)
{
byte b = stack.data[i - 1];
fprintf(fp, "\t%lu: %X", stack.ptr - i, b);
if (i != 1)
fprintf(fp, ", ");
fprintf(fp, "\n");
}
fprintf(fp, "]\n");
}
void vm_print_program(vm_t *vm, FILE *fp)
{
struct Program program = vm->program;
fprintf(fp,
"Program.max = %lu\nProgram.ptr = "
"%lu\nProgram.instructions = [\n",
program.max, program.ptr);
size_t beg = 0;
if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT)
{
fprintf(fp, "\t...\n");
beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT;
}
else
beg = 0;
size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max);
for (size_t i = beg; i < end; ++i)
{
fprintf(fp, "\t%lu: ", i);
inst_print(program.instructions[i], fp);
if (i == program.ptr)
fprintf(fp, " <---");
fprintf(fp, "\n");
}
if (end != program.max)
fprintf(fp, "\t...\n");
fprintf(fp, "]\n");
}
void vm_print_all(vm_t *vm, FILE *fp)
{
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_program(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_registers(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_stack(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
}
err_t vm_jump(vm_t *vm, word w)
{
if (w >= vm->program.max)
return ERR_INVALID_PROGRAM_ADDRESS;
vm->program.ptr = w;
return ERR_OK;
}
err_t vm_push_byte(vm_t *vm, data_t b)
{
if (vm->stack.ptr >= vm->stack.max)
return ERR_STACK_OVERFLOW;
vm->stack.data[vm->stack.ptr++] = b.as_byte;
return ERR_OK;
}
err_t vm_push_hword(vm_t *vm, data_t f)
{
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
return ERR_STACK_OVERFLOW;
byte bytes[HWORD_SIZE] = {0};
convert_hword_to_bytes(f.as_hword, bytes);
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
byte b = bytes[HWORD_SIZE - i - 1];
vm_push_byte(vm, DBYTE(b));
}
return ERR_OK;
}
err_t vm_push_word(vm_t *vm, data_t w)
{
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
return ERR_STACK_OVERFLOW;
byte bytes[WORD_SIZE] = {0};
convert_word_to_bytes(w.as_word, bytes);
for (size_t i = 0; i < WORD_SIZE; ++i)
{
byte b = bytes[WORD_SIZE - i - 1];
vm_push_byte(vm, DBYTE(b));
}
return ERR_OK;
}
err_t vm_push_byte_register(vm_t *vm, word reg)
{
if (reg > vm->registers.used)
return ERR_INVALID_REGISTER_BYTE;
// Interpret each word based register as 8 byte registers
byte b = vm->registers.data[reg];
return vm_push_byte(vm, DBYTE(b));
}
err_t vm_push_hword_register(vm_t *vm, word reg)
{
if (reg > (vm->registers.used / HWORD_SIZE))
return ERR_INVALID_REGISTER_HWORD;
// Interpret the bytes at point reg * HWORD_SIZE as an hword
hword hw = *(hword *)(vm->registers.data + (reg * HWORD_SIZE));
return vm_push_hword(vm, DHWORD(hw));
}
err_t vm_push_word_register(vm_t *vm, word reg)
{
if (reg > (vm->registers.used / WORD_SIZE))
return ERR_INVALID_REGISTER_WORD;
return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg)));
}
err_t vm_mov_byte(vm_t *vm, word reg)
{
if (reg >= vm->registers.used)
{
// Expand capacity
darr_ensure_capacity(&vm->registers, reg - vm->registers.used);
vm->registers.used = MAX(vm->registers.used, reg + 1);
}
data_t ret = {0};
err_t err = vm_pop_byte(vm, &ret);
if (err)
return err;
vm->registers.data[reg] = ret.as_byte;
return ERR_OK;
}
err_t vm_mov_hword(vm_t *vm, word reg)
{
if (reg >= (vm->registers.used / HWORD_SIZE))
{
// Expand capacity till we can ensure that this is a valid
// register to use
// Number of hwords needed ontop of what is allocated:
const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE));
// Number of bytes needed ontop of what is allocated
const size_t diff = (hwords + 1) * HWORD_SIZE;
darr_ensure_capacity(&vm->registers, diff);
vm->registers.used = MAX(vm->registers.used, (reg * HWORD_SIZE) + 1);
}
data_t ret = {0};
err_t err = vm_pop_hword(vm, &ret);
if (err)
return err;
// Here we treat vm->registers as a set of hwords
hword *hword_ptr = (hword *)(vm->registers.data + (reg * HWORD_SIZE));
*hword_ptr = ret.as_hword;
return ERR_OK;
}
err_t vm_mov_word(vm_t *vm, word reg)
{
if (reg >= (vm->registers.used / WORD_SIZE))
{
// Number of hwords needed ontop of what is allocated:
const size_t words = (reg - (vm->registers.used / WORD_SIZE));
// Number of bytes needed ontop of what is allocated
const size_t diff = (words + 1) * WORD_SIZE;
darr_ensure_capacity(&vm->registers, diff);
vm->registers.used = MAX(vm->registers.used, (reg * WORD_SIZE) + 1);
}
else if (vm->stack.ptr < sizeof(word))
return ERR_STACK_UNDERFLOW;
data_t ret = {0};
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
VM_NTH_REGISTER(vm->registers, reg) = ret.as_word;
return ERR_OK;
}
err_t vm_dup_byte(vm_t *vm, word w)
{
if (vm->stack.ptr < w + 1)
return ERR_STACK_UNDERFLOW;
return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w]));
}
err_t vm_dup_hword(vm_t *vm, word w)
{
if (vm->stack.ptr < HWORD_SIZE * (w + 1))
return ERR_STACK_UNDERFLOW;
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
bytes[HWORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i];
return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes)));
}
err_t vm_dup_word(vm_t *vm, word w)
{
if (vm->stack.ptr < WORD_SIZE * (w + 1))
return ERR_STACK_UNDERFLOW;
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
bytes[WORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i];
return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes)));
}
err_t vm_pop_byte(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr == 0)
return ERR_STACK_UNDERFLOW;
*ret = DBYTE(vm->stack.data[--vm->stack.ptr]);
return ERR_OK;
}
err_t vm_pop_hword(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr < HWORD_SIZE)
return ERR_STACK_UNDERFLOW;
byte bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
data_t b = {0};
vm_pop_byte(vm, &b);
bytes[i] = b.as_byte;
}
*ret = DWORD(convert_bytes_to_hword(bytes));
return ERR_OK;
}
err_t vm_pop_word(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr < WORD_SIZE)
return ERR_STACK_UNDERFLOW;
byte bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
{
data_t b = {0};
vm_pop_byte(vm, &b);
bytes[i] = b.as_byte;
}
*ret = DWORD(convert_bytes_to_word(bytes));
return ERR_OK;
}
#define VM_NOT_TYPE(TYPEL, TYPEU) \
err_t vm_not_##TYPEL(vm_t *vm) \
{ \
data_t a = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \
}
VM_NOT_TYPE(byte, BYTE)
VM_NOT_TYPE(hword, HWORD)
VM_NOT_TYPE(word, WORD)
#define VM_BITWISE_TYPE(COMPNAME, COMP, TYPEL, TYPEU) \
err_t vm_##COMPNAME##_##TYPEL(vm_t *vm) \
{ \
data_t a = {0}, b = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
err = vm_pop_##TYPEL(vm, &b); \
if (err) \
return err; \
return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \
}
#define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL) \
err_t vm_##COMPNAME##_##GETL(vm_t *vm) \
{ \
data_t a = {0}, b = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
err = vm_pop_##TYPEL(vm, &b); \
if (err) \
return err; \
return vm_push_byte(vm, DBYTE(b.as_##GETL COMP a.as_##GETL)); \
}
VM_BITWISE_TYPE(or, |, byte, BYTE)
VM_BITWISE_TYPE(or, |, hword, HWORD)
VM_BITWISE_TYPE(or, |, word, WORD)
VM_BITWISE_TYPE(and, &, byte, BYTE)
VM_BITWISE_TYPE(and, &, hword, HWORD)
VM_BITWISE_TYPE(and, &, word, WORD)
VM_BITWISE_TYPE(xor, ^, byte, BYTE)
VM_BITWISE_TYPE(xor, ^, hword, HWORD)
VM_BITWISE_TYPE(xor, ^, word, WORD)
VM_COMPARATOR_TYPE(eq, ==, byte, byte)
VM_COMPARATOR_TYPE(eq, ==, byte, char)
VM_COMPARATOR_TYPE(eq, ==, hword, hword)
VM_COMPARATOR_TYPE(eq, ==, hword, int)
VM_COMPARATOR_TYPE(eq, ==, word, word)
VM_COMPARATOR_TYPE(eq, ==, word, long)
VM_COMPARATOR_TYPE(lt, <, byte, byte)
VM_COMPARATOR_TYPE(lt, <, byte, char)
VM_COMPARATOR_TYPE(lt, <, hword, hword)
VM_COMPARATOR_TYPE(lt, <, hword, int)
VM_COMPARATOR_TYPE(lt, <, word, word)
VM_COMPARATOR_TYPE(lt, <, word, long)
VM_COMPARATOR_TYPE(lte, <=, byte, byte)
VM_COMPARATOR_TYPE(lte, <=, byte, char)
VM_COMPARATOR_TYPE(lte, <=, hword, hword)
VM_COMPARATOR_TYPE(lte, <=, hword, int)
VM_COMPARATOR_TYPE(lte, <=, word, word)
VM_COMPARATOR_TYPE(lte, <=, word, long)
VM_COMPARATOR_TYPE(gt, >, byte, byte)
VM_COMPARATOR_TYPE(gt, >, byte, char)
VM_COMPARATOR_TYPE(gt, >, hword, hword)
VM_COMPARATOR_TYPE(gt, >, hword, int)
VM_COMPARATOR_TYPE(gt, >, word, word)
VM_COMPARATOR_TYPE(gt, >, word, long)
VM_COMPARATOR_TYPE(gte, >=, byte, byte)
VM_COMPARATOR_TYPE(gte, >=, byte, char)
VM_COMPARATOR_TYPE(gte, >=, hword, hword)
VM_COMPARATOR_TYPE(gte, >=, hword, int)
VM_COMPARATOR_TYPE(gte, >=, word, word)
VM_COMPARATOR_TYPE(gte, >=, word, long)
err_t vm_plus_byte(vm_t *vm)
{
data_t a = {0}, b = {0};
err_t err = vm_pop_byte(vm, &a);
if (err)
return err;
err = vm_pop_byte(vm, &b);
if (err)
return err;
return vm_push_byte(vm, DBYTE(a.as_byte + b.as_byte));
}
err_t vm_plus_hword(vm_t *vm)
{
data_t a = {0}, b = {0};
err_t err = vm_pop_hword(vm, &a);
if (err)
return err;
err = vm_pop_hword(vm, &b);
if (err)
return err;
return vm_push_hword(vm, DHWORD(a.as_hword + b.as_hword));
}
err_t vm_plus_word(vm_t *vm)
{
data_t a = {0}, b = {0};
err_t err = vm_pop_word(vm, &a);
if (err)
return err;
err = vm_pop_word(vm, &b);
if (err)
return err;
return vm_push_word(vm, DWORD(a.as_word + b.as_word));
}