Files
dotfiles/Emacs/.config/emacs/config.org

97 KiB
Raw Blame History

Emacs configuration

My configuration for (a very specific form of) Emacs

Basics

Firstly, set full name and mail address for use in a variety of applications, including encryption.

(setq user-full-name "Aryadev Chavali"
      user-mail-address "aryadev@aryadevchavali.com")

Let's set all yes or no questions to single letter responses.

(fset 'yes-or-no-p 'y-or-n-p)

Set the encoding to UTF-8-Unix by default.

(use-package emacs
  :straight nil
  :init
  (setq-default buffer-file-coding-system 'utf-8-unix
                save-buffer-coding-system 'utf-8-unix))

Setup no-littering, which cleans up many of the default directories in Emacs.

(use-package no-littering
  :demand t
  :init
  (setq no-littering-etc-directory (expand-file-name ".config/"  user-emacs-directory)
        no-littering-var-directory (expand-file-name ".local/" user-emacs-directory)))

File saves and custom file

Setup file saving and auto-revert-mode. Along with that, setup the custom-file to exist in the var-directory

(use-package emacs
  :straight nil
  :init
  (setq backup-directory-alist `(("." . ,(no-littering-expand-var-file-name "saves/")))
        global-auto-revert-non-file-buffers nil
        auto-revert-verbose nil)
  (setq custom-file (no-littering-expand-etc-file-name "custom.el"))
  :config
  (global-auto-revert-mode 1))

Custom Functions

Functions that don't require a packages to work other than Emacs, which means I can define them early and use them later.

Toggle buffer

Like VSCode's toggling feature for just the terminal, but now for anything I want.

(with-eval-after-load "window"
  (defmacro +oreo/create-toggle-function (func-name buf-name
                                                    buf-create
                                                    &optional accept-numeric)
    "Generate a function named FUNC-NAME that toggles the buffer with
name BUF-NAME, using BUF-CREATE to generate it if necessary.

BUF-NAME cannot be a regexp, it must be a fixed name."
    (let ((interactive-arg
           (if accept-numeric '(interactive "p") '(interactive)))
          (arguments
           (if accept-numeric '(&optional arg) nil))
          (buffer-name (if accept-numeric
                           `(if (= arg 1)
                                ,buf-name
                              (concat ,buf-name "<" (int-to-string arg) ">"))
                         buf-name))
          (buffer-create (if accept-numeric
                             `(if (= arg 1)
                                  (,buf-create)
                                (,buf-create arg))
                           `(,buf-create))))
      `(defun ,func-name ,arguments
         ,interactive-arg
         (let* ((buffer (or (get-buffer ,buffer-name)
                            ,buffer-create))
                (displayed (get-buffer-window buffer)))
           (cond (displayed
                  (select-window displayed)
                  (delete-window))
                 (t
                  (display-buffer buffer)
                  (select-window (get-buffer-window buffer)))))))))

Auto-run command after-save-hook

Define a macro that can run a body of functionality on a given set of files on after-save-hook.

(use-package simple
  :straight nil
  :config
  (defmacro +oreo/create-auto-save (func-name conditions &rest to-run)
    "Create a hook function with name FUNC-NAME such that when the
set of predicates CONDITIONS is satisfied evaluate TO-RUN after a
save."
    `(progn
       (defun ,func-name ()
         (interactive)
         (when ,conditions
           ,@to-run))
       (add-hook 'after-save-hook (quote ,func-name)))))

Procedure

The lambda macro provides a function with possible arguments. A procedure is a type of form that takes no arguments. This macro returns an anonymous function with no arguments with all the forms provided. It returns it in 'backquoted' form as that is the most common use of this macro.

(You may notice proc is used where the return value doesn't matter).

(defmacro proc (&rest CDR)
  "For a given list of forms CDR, return a quoted non-argument
lambda."
  `(quote (lambda () ,@CDR)))

sys-name-cond

A macro that acts as a switch case on (system-name) which allows user to write machine specific code. For me this is for my desktop, laptop and any other machines that may require specific configuration.

(defmacro +oreo/sys-name-cond (&rest pairs)
  "Switch case on result of function `system-name'.

Each pair in PAIRS is typed as:
- (car pair) => string of system name to test.
- (cdr pair) => forms to evaluate."
  (let ((current-lisp))
    (while pairs
      (let* ((pair (car pairs))
             (name (car pair))
             (body (cdr pair)))
        (add-to-list
         'current-lisp
         `((string= ,name (system-name)) ,@body))
        (setq pairs (cdr pairs))))
    `(cond
      ,@current-lisp)))

In early-init.el I set the number of native-workers to 4, which isn't necessarily optimal when loading/compiling the rest of this file depending on the machine I use:

  • On my laptop (spiderboy) I'd prefer to have it use 2-3 threads so I can actually use the rest of the laptop while waiting for compilation
  • On my desktop (oldboy) I'd prefer to use 4-6 threads as I can afford more to get a much faster compilation as a result.
(+oreo/sys-name-cond
 ("spiderboy"
  (setq native-comp-async-jobs-number 3))
 ("oldboy"
  (setq native-comp-async-jobs-number 6)))

Clean buffer list

Instead of cleaning my buffer list manually, just use this. Preserves any buffers in +oreo/keep-buffer and kills the rest.

(defconst +oreo/keep-buffers
  (list "config.org" "*scratch*"
        "*dashboard*" "*Messages*"
        "*Warnings*")
  "List of buffer names to preserve.")

(defun +oreo/clean-buffer-list ()
  "Kill all buffers except any with names in +oreo/keep-buffers."
  (interactive)
  (mapcar #'(lambda (buf)
         (if (not (member (buffer-name buf) +oreo/keep-buffers))
             (kill-buffer buf)))
     (buffer-list)))

Aesthetics

Load my custom "personal-primary" theme which is stored in the Emacs lisp folder (look at this file).

I have an older version of this theme that uses a homogeneous colour scheme (this file)

(use-package custom
  :demand t
  :straight nil
  :init
  (setq custom-theme-directory (concat user-emacs-directory "elisp/"))
  :config
  (load-theme 'personal-primary t))

Set font size to 140 if on my desktop (oldboy) or 175 if on my laptop (spiderboy).

(use-package faces
  :straight nil
  :config
  (+oreo/sys-name-cond
   ("spiderboy" (set-face-attribute 'default nil :height 175))
   ("oldboy" (set-face-attribute 'default nil :height 140))))

Turn off the startup buffer because I prefer Dashboard, and write into the scratch buffer some nice information about Emacs.

(use-package emacs
  :straight nil
  :init
  (setq inhibit-startup-screen t
        initial-scratch-message (format ";; Emacs v%s\n" emacs-version)
        ring-bell-function 'ignore))

Turn off blinking-cursor-mode as we will later be setting up hl-line, which does a better job of indicating where the cursor is on screen.

(use-package frame
  :straight nil
  :config
  (blink-cursor-mode 0))

After turning off borders in my window manager, I tried turning off the borders for Emacs. Incredible, must be done.

(use-package fringe
  :after dashboard
  :straight nil
  :init
  (setq left-fringe-width 0
        right-fringe-width 0)
  :config
  (fringe-mode 0))

Core packages

General

Setup general, a good package for defining keys. In this case, I generate a new definer for the "LEADER" keys. Leader is bound to SPC and it's functionally equivalent to the doom/spacemacs leader. Local leader is bound to SPC , and it's similar to doom/spacemacs leader but doesn't try to fully assimilate the local-leader map instead just picking stuff I think is useful.

(use-package general
  :demand t
  :config
  (general-def
    :states '(normal motion)
    "SPC"   nil)

  (general-create-definer leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC")

  (general-create-definer local-leader
    :states '(normal motion)
    :prefix "SPC ,")

  (general-create-definer general-nmmap
    :states '(normal motion))

  (defalias 'nmmap #'general-nmmap)

  (general-evil-setup t))

Add bindings for +literate/ namespace, allows for quick reloads.

(use-package general
  :general
  (leader
    :infix "q"
    "c" #'+literate/compile-config
    "l" #'+literate/load-config
    "d" #'delete-frame))

Some default binds in Emacs

(use-package emacs
  :straight nil
  :general
  (general-def
    "C-x d" #'delete-frame)

  (nmmap
    "C--" #'text-scale-decrease
    "C-=" #'text-scale-increase)

  (local-leader
    :keymaps 'override
    ";" #'browse-url-emacs)

  (leader
    "SPC" #'execute-extended-command
    "u"   #'universal-argument
    ";"   #'eval-expression
    ":"   (proc (interactive) (switch-to-buffer "*scratch*"))
    "!"   #'async-shell-command
    "qq"   #'save-buffers-kill-terminal
    "cF" (proc (interactive) (find-file "~/Code/")))

  (leader
    :infix "f"
    "f" #'find-file
    "F" #'find-file-other-frame
    "s" #'save-buffer
    "p" (proc (interactive) (find-file (concat user-emacs-directory "config.org"))))

  (leader
    :infix "c"
    "j" #'next-error
    "k" #'previous-error
    "c" #'compile
    "C" #'recompile)

  (leader
    "si" #'imenu)

  (leader
    "h"   #'help-command))

Evil

Evil (Emacs VI Layer) is a package that brings the Vi experience to Emacs. Packaged with it by default are:

  • The modal system
  • EX
  • Vi mapping functions

This provides a lot of stuff for the average vim user moving to Emacs. However there are many other packages surrounding evil that port even greater functionality from vi to Emacs. Surround, commenting, multiple cursors and further support to other packages are configured here.

Evil core

Setup the evil package, with some opinionated keybindings:

  • Switch evil-upcase and evil-downcase because I use evil-upcase more
  • Switch evil-goto-mark and evil-goto-mark-line as I'd rather have the global one closer to the home row
  • Use 'T' character as an action for transposing objects
(use-package evil
  :demand t
  :hook (after-init-hook . evil-mode)
  :general
  (nmmap
    "TAB" #'evil-jump-item
    "r"   #'evil-replace-state
    "zC"  #'hs-hide-level
    "'"   #'evil-goto-mark
    "`"   #'evil-goto-mark-line
    "C-w" #'evil-window-map
    "gu"  #'evil-upcase
    "gU"  #'evil-downcase
    "T"   nil)
  (nmmap
    :infix "T"
    "w" #'transpose-words
    "c" #'transpose-chars
    "s" #'transpose-sentences
    "p" #'transpose-paragraphs
    "e" #'transpose-sexps
    "l" #'transpose-lines)
  (vmap
    :keymaps '(emacs-lisp-mode-map lisp-interaction-mode-map)
    "gr" #'eval-region)
  (leader
    "w"  #'evil-window-map
    "wd" #'delete-frame)
  :init
  (setq evil-want-keybinding nil
        evil-split-window-below t
        evil-vsplit-window-right t
        evil-want-abbrev-expand-on-insert-exit t
        evil-undo-system #'undo-tree)
  :config
  (fset #'evil-window-vsplit #'make-frame))

Evil surround

(use-package evil-surround
  :after evil
  :config
  (global-evil-surround-mode))

Evil commentary

(use-package evil-commentary
  :after evil
  :config
  (evil-commentary-mode))

Evil multi cursor

Setup for multi cursors in Evil mode. Don't let evil-mc setup it's own keymap because it uses 'gr' as its prefix, which I don't like.

(use-package evil-mc
  :after evil
  :init
  (defvar evil-mc-key-map (make-sparse-keymap))
  :general
  (nmap
    :infix "gz"
    "q" #'evil-mc-undo-all-cursors
    "d" #'evil-mc-make-and-goto-next-match
    "j" #'evil-mc-make-cursor-move-next-line
    "k" #'evil-mc-make-cursor-move-prev-line
    "j" #'evil-mc-make-cursor-move-next-line
    "m" #'evil-mc-make-all-cursors
    "z" #'evil-mc-make-cursor-here
    "r" #'evil-mc-resume-cursors
    "s" #'evil-mc-pause-cursors
    "u" #'evil-mc-undo-last-added-cursor)
  :config
  ;; (evil-mc-define-vars)
  ;; (evil-mc-initialize-vars)
  ;; (add-hook 'evil-mc-before-cursors-created #'evil-mc-pause-incompatible-modes)
  ;; (add-hook 'evil-mc-before-cursors-created #'evil-mc-initialize-active-state)
  ;; (add-hook 'evil-mc-after-cursors-deleted  #'evil-mc-teardown-active-state)
  ;; (add-hook 'evil-mc-after-cursors-deleted  #'evil-mc-resume-incompatible-modes)
  ;; (advice-add #'evil-mc-initialize-hooks :override #'ignore)
  ;; (advice-add #'evil-mc-teardown-hooks :override #'evil-mc-initialize-vars)
  ;; (advice-add #'evil-mc-initialize-active-state :before #'turn-on-evil-mc-mode)
  ;; (advice-add #'evil-mc-teardown-active-state :after #'turn-off-evil-mc-mode)
  ;; (add-hook 'evil-insert-state-entry-hook #'evil-mc-resume-cursors)
  (global-evil-mc-mode))

Evil collection

Setup evil collection, but don't turn on the mode. Instead, I'll turn on setups for specific modes I think benefit from it.

(use-package evil-collection
  :after evil
  :config
  (evil-collection-require 'dired))

Completion

Emacs is a text based interface. As a text based interface it heavily leverages searches and user filters to manage input and provide functionality. Though the standard model of completion may be desirable to some, it can be advanced through the use of 'completion frameworks'.

These frameworks handle the input from the user for common commands and provide a differing interface to the one Emacs comes with. Most of these completion frameworks provide a text based menu that is actively filtered as more input is provided (progressive input filtering). Along with these frameworks come added functionality and applications to integrate into the Emacs environment further.

One may say that when using a completion framework there is no point in using any other framework as they encompasses so much of the default functionality. This is wrong: I'd argue that with a bit of management and Emacs lisp it's totally possible to pick and mix your options. For small number selections (like finding files) use something like Ido and for something larger like searching buffers use ivy.

Along with frameworks, there is a configuration for the completions-list, which is actually the original and default method of completion within Emacs. When you first install Emacs without a config, any 'completing-read' function leverages the completions-list when TAB is used.

Though I believe Ido is a better completion system than the completions-list, it still has it's place and can be used in tandem with ido.

Amx

Amx is a fork of Smex that works to enhance the execute-extended-command interface. It also provides support for ido or ivy (though I'm likely to use ido here) and allows you to switch between them.

It provides a lot of niceties such as presenting the key bind when looking for a command.

(use-package amx
  :config
  (amx-mode))

Orderless

Orderless sorting method for completion, probably one of the best things ever.

(use-package orderless
  :after (ivy ido)
  :config
  (setf (alist-get t ivy-re-builders-alist) 'orderless-ivy-re-builder))

Ido

Ido is a very old completion package that still works great to this day. Though it is limited in its scope (and may thus be called a completion add-on rather than a full on framework), it is still a very powerful package. With the use of ido-completing-read+, it may be used similarly to a fully fledged completion framework.

(use-package ido
  :demand t
  :general
  (general-def
    :keymaps '(ido-buffer-completion-map
               ido-file-completion-map
               ido-file-dir-completion-map
               ido-common-completion-map)
    (kbd "M-j")   #'ido-next-match
    (kbd "M-k")   #'ido-prev-match
    (kbd "C-x o") #'evil-window-up)
  :init
  (setq ido-decorations
        (list "{" "}" " \n" " ..." "[" "]" " [No match]" " [Matched]"
              " [Not readable]" " [Too big]" " [Confirm]")
        completion-styles '(flex partial-completion intials emacs22))
  (setq-default ido-enable-flex-matching t
                ido-enable-dot-prefix t
                ido-enable-regexp nil)
  (with-eval-after-load "magit"
    (setq magit-completing-read-function 'magit-ido-completing-read))
  :config
  (ido-mode)
  (ido-everywhere))
Ido ubiquitous

Ido completing-read+ is a package that extends the ido package to work with more text based functions.

(use-package ido-completing-read+
  :after ido
  :config
  (ido-ubiquitous-mode +1))

Completions-list

(use-package simple
  :straight nil
  :general
  (nmmap
    :keymaps 'completion-list-mode-map
    "l"   #'next-completion
    "h"   #'previous-completion
    "ESC" #'delete-completion-window
    "q"   #'quit-window
    "RET" #'choose-completion)
  :config
  (with-eval-after-load "evil"
    (setq evil-emacs-state-modes (cl-remove-if
                                  #'(lambda (x) (eq 'completions-list-mode x))
                                  evil-emacs-state-modes))
    (add-to-list 'evil-normal-state-modes 'completions-list-mode)))

Ivy

Ivy is a completion framework for Emacs, and my preferred (sometimes second favourite) one. It has a great set of features with little to no pain with setting up.

Ivy Core

Setup for ivy, in preparation for counsel. Turn on ivy-mode just after init.

Setup vim-like bindings for the minibuffer ("M-(j|k)" for down|up the selection list).

(use-package ivy
  :defer t
  :hook (after-init-hook . ivy-mode)
  :general
  (general-def
    :keymaps  'ivy-minibuffer-map
    "C-j"     #'ivy-yank-symbol
    "M-j"     #'ivy-next-line-or-history
    "M-k"     #'ivy-previous-line-or-history
    "C-c C-e" #'ivy-occur)
  (general-def
    :keymaps  'ivy-switch-buffer-map
    "M-j"     #'ivy-next-line-or-history
    "M-k"     #'ivy-previous-line-or-history)
  :config
  (require 'counsel nil t)
  (setq ivy-height 10
        ivy-wrap t
        ivy-fixed-height-minibuffer t
        ivy-use-virtual-buffers nil
        ivy-virtual-abbreviate 'full
        ivy-on-del-error-function #'ignore
        ivy-use-selectable-prompt t)
  (with-eval-after-load "amx"
    (setq amx-backend 'ivy)))
Counsel

Setup for counsel. Load after ivy and helpful.

Along with that, set the help function and variable functions to their helpful counterparts.

(use-package counsel
  :after ivy
  :general
  (leader
    "ss" #'counsel-grep-or-swiper
    "sr" #'counsel-rg
    "fr" #'counsel-recentf
    "ic" #'counsel-unicode-char)
  (general-def
    [remap describe-bindings]        #'counsel-descbinds
    [remap load-theme]               #'counsel-load-theme)
  :config
  (setq ivy-initial-inputs-alist nil
        counsel-describe-function-function #'helpful-callable
        counsel-describe-variable-function #'helpful-variable
        counsel-grep-swiper-limit 1500000
        ivy-re-builders-alist '((swiper . ivy--regex-plus)
                                (counsel-grep-or-swiper . ivy--regex-plus)
                                (counsel-rg . ivy--regex-plus)
                                (t . ivy--regex-ignore-order)))
  (counsel-mode))
Ivy posframe

This makes ivy minibuffer windows use child frames. Very nice eyecandy.

(use-package ivy-posframe
  :hook (ivy-mode-hook . ivy-posframe-mode)
  :straight t
  :init
  (setq ivy-posframe-parameters
        '((left-fringe      . 0)
          (right-fringe     . 0)
          (background-color . "grey7")))

  (setq ivy-posframe-display-functions-alist
        '((t . ivy-posframe-display-at-window-center))))
Counsel etags

Counsel etags allows me to search generated tag files for tags. I already have a function defined to generate the tags, so it's just searching them which I find to be a bit of a hassle, and where this package comes in.

(use-package counsel-etags
  :after counsel
  :general
  (leader "st" #'counsel-etags-find-tag))

Company

Company is the auto complete system I use. I don't like having heavy setups for company as it only makes it slower to use. In this case, just setup some evil binds for company.

(use-package company
  :straight t
  :hook
  (prog-mode-hook   . company-mode)
  (eshell-mode-hook . company-mode)
  :general
  (imap
    "C-SPC" #'company-complete)
  (general-def
    :states '(normal insert)
    "M-j" #'company-select-next
    "M-k" #'company-select-previous))

Pretty symbols

Prettify symbols mode allows for users to declare 'symbols' that replace text within certain modes. For example, you may replace the 'for' word in c-mode for universal quantification. Though this may seem like useless eye candy, it has aided my comprehension and speed of recognition (recognising symbols is easier than words for many, including me).

Now here I provide a macro +pretty/set-alist. This macro works pretty simply: given a mode hook, as well as a list of pairs typed (text to substitute, symbol to replace with). Then I add a hook to the given mode, setting the prettify-symbols-alist to the symbols given.

I've declared it pretty high up into my config so that the rest of my packages can leverage it. Furthermore I've added a use-package keyword which makes declaring this for language modes incredibly easy. Checkout my C/C++ configuration for an example.

(use-package prog-mode
  :straight nil
  :init
  (setq prettify-symbols-unprettify-at-point t)
  :config
  (with-eval-after-load "use-package-core"
    (add-to-list 'use-package-keywords ':pretty)
    (defun use-package-normalize/:pretty (_name-symbol _keyword args)
      args)

    (defun use-package-handler/:pretty (name _keyword args rest state)
      (use-package-concat
       (use-package-process-keywords name rest state)
       (let ((arg args)
             forms)
         (while arg
           (let* ((carg (car arg))
                  (mode (car carg))
                  (rest (cdr carg)))
             (add-to-list
              'forms
              `(add-hook
                ',mode
                (lambda ()
                  (setq prettify-symbols-alist ',rest)
                  (prettify-symbols-mode)))))
           (setq arg (cdr arg)))
         forms))))

  (defmacro +pretty/set-alist (mode &rest symbols)
    `(add-hook
      ',mode
      (lambda ()
        (setq prettify-symbols-alist ',symbols)
        (prettify-symbols-mode))))

  (defun +pretty/set-alist-f (mode symbols)
    `(+pretty/set-alist mode ,@symbols)))

Here's a collection of symbols I have currently that may be used later.

("null"   . "Ø")
("list"   . "")
("string" . "𝕊")
("true"   . "")
("false"  . "⊥")
("char"   . "")
("int"    . "")
("float"  . "")
("!"      . "¬")
("&&"     . "∧")
("||"      . "")
("for"    . "∀")
("return" . "⟼")
("print"  . "")
("lambda" . "λ")

Window management

Window management is really important. I find the default window handling of Emacs incredibly annoying: sometimes consuming my windows, sometimes creating new ones. Of course, anything and everything is adaptable in Emacs, this behavior is no different.

Here I create a use-package extension that manages the whole ordeal of adding a new record to the display-buffer-alist, a useful abstraction that makes it easy to manage the various buffers created by packages.

(use-package window
  :straight nil
  :general
  (leader
    :infix "b"
    "b" #'switch-to-buffer
    "d" #'kill-current-buffer
    "K" #'kill-buffer
    "j" #'next-buffer
    "k" #'previous-buffer
    "D" #'+oreo/clean-buffer-list)
  :init
  (with-eval-after-load "use-package-core"
    (add-to-list 'use-package-keywords ':display)
    (defun use-package-normalize/:display (_name-symbol _keyword args)
      args)

    (defun use-package-handler/:display (name _keyword args rest state)
      (use-package-concat
       (use-package-process-keywords name rest state)
       (let ((arg args)
             forms)
         (while arg
           (add-to-list 'forms
                        `(add-to-list 'display-buffer-alist
                                      ',(car arg)))
           (setq arg (cdr arg)))
         forms)))))

Setup some display records

Using the :display keyword, setup up some display-buffer-alist records. This is mostly for packages that aren't really configured (like woman) or packages that were configured before (like Ivy).

(use-package window
  :straight nil
  :defer t
  :display
  ("\\*\\(Wo\\)?Man.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))

  ("\\*Process List\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))

  ("\\*\\(Ido \\)?Completions\\*"
   (display-buffer-in-side-window)
   (window-height . 0.25)
   (side . bottom))

  ("\\*ivy-occur.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))

  ("\\*Async Shell Command\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25)))

Auto typing

Snippets are a system by which pieces of code can be inserted via prefixes. For example, an 'if' snippet would work by first inserting the word 'if' then pressing some expansion key such as TAB. This will insert a set of text that may be have some components that need to be further filled by the user.

The popular solution is Yasnippet. Yasnippet is a great package for snippets, which I use heavily in programming and org-mode. I setup here the global mode for yasnippet and a collection of snippets for ease of use.

However, Emacs provides its own 'auto typing' facilities. Abbrevs and skeletons make up the popular solution within Emacs default. Abbrevs are for simple expressions wherein there is only one user input (say, getting today's time which only requires you asking for it). They provide a lot of inbuilt functionality and are quite useful. Skeletons, on the other hand, are for higher level insertions

Abbrevs

Just define a few abbrevs for various date-time operations. Also define a macro that will assume a function for the expansion, helping with abstracting a few things away.

(use-package abbrev
  :straight nil
  :hook
  (prog-mode-hook . abbrev-mode)
  (text-mode-hook . abbrev-mode)
  :init
  (defmacro +autotyping/deff-abbrev (ABBREV-TABLE ABBREV EXPANSION)
    "Wraps around define-abbrev to fill in some repeated stuff
when expansion is a function."
    `(define-abbrev
       ,ABBREV-TABLE
       ,ABBREV
       ""
       (proc (insert ,EXPANSION))))

  (setq save-abbrevs nil)
  :config
  (+autotyping/deff-abbrev
   global-abbrev-table
   "sdate"
   (format-time-string "%Y-%m-%d" (current-time)))

  (+autotyping/deff-abbrev
   global-abbrev-table
   "stime"
   (format-time-string "%H:%M:%S" (current-time)))

  (+autotyping/deff-abbrev
   text-mode-abbrev-table
   "sday"
   (format-time-string "%A" (current-time)))

  (+autotyping/deff-abbrev
   text-mode-abbrev-table
   "smon"
   (format-time-string "%B" (current-time))))

Skeletons

Defining some basic skeletons and a macro to help generate an abbrev as well.

(use-package skeleton
  :straight nil
  :after abbrev
  :config
  (defmacro +autotyping/gen-skeleton-abbrev (mode abbrev &rest skeleton)
    (let* ((table          (intern (concat (symbol-name mode) "-abbrev-table")))
           (skeleton-name  (intern (concat "+skeleton/" (symbol-name mode) "/" abbrev))))
      `(progn
         (define-skeleton
           ,skeleton-name
           ""
           ,@skeleton)
         (define-abbrev ,table
           ,abbrev
           ""
           ',skeleton-name)))))

Auto insert

(use-package autoinsert
  :straight nil
  :hook (after-init-hook . auto-insert-mode)
  :config
  (add-to-list
   'auto-insert-alist
   '(("\\.html\\'" . "HTML Skeleton")
     ""
     "<!doctype html>
<html class='no-js' lang=''>
  <head>
    <meta charset='utf-8'>
    <meta http-equiv='x-ua-compatible' content='ie=edge'>
    <title>"(read-string "Enter title: ") | """</title>
    <meta name='description' content='" (read-string "Enter description: ") | "" "'>
    <meta name='author' content='"user-full-name"'/>
    <meta name='viewport' content='width=device-width, initial-scale=1'>

    <link rel='apple-touch-icon' href='/apple-touch-icon.png'>
    <link rel='shortcut icon' href='/favicon.ico'/>
    <!-- Place favicon.ico in the root directory -->

  </head>
  <body>
    <!--[if lt IE 8]>
      <p class='browserupgrade'>
      You are using an <strong>outdated</strong> browser. Please
      <a href='http://browsehappy.com/'>upgrade your browser</a> to improve
      your experience.
      </p>
    <![endif]-->
"
     _
"     </body>
</html>"))
  (add-to-list
   'auto-insert-alist
   '(("Makefile" . "Makefile skeleton")
     ""
     "CC=g++
CFLAGS=-Wall -ggdb
OBJECTS=main.o
OUT=main
ARGS=

%.o: %.cpp
  $(CC) $(CFLAGS) -c $^ -o $@

$(OUT): $(OBJECTS)
  $(CC) $(CFLAGS) $^ -o $@

.PHONY:
clean:
  rm -rfv $(OUT) $(OBJECTS)

.PHONY: run
run: $(OUT)
  ./$^ $(ARGS)

.PHONY: memcheck
memcheck: $(OUT)
  sh /etc/profile.d/debuginfod.sh && valgrind --leak-check=full -s --tool=memcheck ./$^ $(ARGS)"
     _)))

Yasnippet default

Setup global mode after evil mode has been loaded

(use-package yasnippet
  :after evil
  :hook
  (prog-mode-hook . yas-minor-mode)
  (text-mode-hook . yas-minor-mode)
  :general
  (leader
    "ii" #'yas-insert-snippet)
  :config
  (yas-load-directory (no-littering-expand-etc-file-name "yasnippet/snippets")))

Mode line

A mode line in an editor can provide a LOT of information, or very little. I customised the Emacs modeline to give me a bit of info, telephone-line to give me a lot.

Emacs Mode-line

Check out this package for my current modeline.

Firstly, declare a variable for the separator between each module

(defconst +modeline/separator " " "Separator between modules.")

Then declare a variable for the number of separators between each module in the modeline.

(defconst +modeline/sep-count 4 "Number of +modline/separator instances separating modules.")

Then, declare a list of reserved characters for which the previously declared seperator won't be applied when placed at the end of a module string.

(defconst +modeline/reserved-chars (list "[" "(")
  "Characters that, when at the end of a module string, won't have the separator applied to them.")

Now declare a function that applies the separator with respect to the reserved characters to any one string.

(defun +modeline/handle-string (STR)
  (condition-case nil
      (progn
        (string-blank-p STR)
        (cond ((cl-member (car (last (split-string STR "" t))) +modeline/reserved-chars :test #'string=) STR)
              (t (concat STR (cl-reduce #'concat (cl-loop for i from 1 to +modeline/sep-count collect +modeline/separator))))))
    (error STR)))

Finally, set the mode-line-format.

(setq-default
 mode-line-format
 (mapcar #'+modeline/handle-string
         (list "%l:%c"
               "%p["
               '(:eval (upcase
                        (substring
                         (format "%s" (if (bound-and-true-p evil-state) evil-state ""))
                         0 1)))
               "]"
               "%+%b("
               '(:eval (format "%s" major-mode))
               ")"
               "%I"
               vc-mode
               "        "
               mode-line-misc-info
               mode-line-end-spaces)))

Telephone-line

Telephone-line is a mode-line package for Emacs which prioritises extensibility. It also looks much nicer than the default mode line with colouring and a ton of presentations to choose from.

(use-package telephone-line
  :init
  (defface +telephone/position-face '((t (:foreground "red" :background "grey10"))) "")
  (defface +telephone/mode-face '((t (:foreground "white" :background "dark green"))) "")
  (defface +telephone/file-info-face '((t (:foreground "white" :background "Dark Blue"))) "")
  :custom
  (telephone-line-faces
   '((evil      . telephone-line-modal-face)
     (modal     . telephone-line-modal-face)
     (ryo       . telephone-line-ryo-modal-face)
     (accent    . (telephone-line-accent-active . telephone-line-accent-inactive))
     (nil         . (mode-line                    . mode-line-inactive))
     (position  . (+telephone/position-face     . mode-line-inactive))
     (mode      . (+telephone/mode-face         . mode-line-inactive))
     (file-info . (+telephone/file-info-face    . mode-line-inactive))))
  (telephone-line-primary-left-separator    'telephone-line-halfcos-left)
  (telephone-line-secondary-left-separator  'telephone-line-halfcos-hollow-left)
  (telephone-line-primary-right-separator   'telephone-line-identity-right)
  (telephone-line-secondary-right-separator 'telephone-line-identity-hollow-right)
  (telephone-line-height 24)
  (telephone-line-evil-use-short-tag nil)
  :config
  (telephone-line-defsegment +telephone/buffer-or-filename ()
    (cond
     ((buffer-file-name)
      (if (and (fboundp 'projectile-project-name)
             (fboundp 'projectile-project-p)
             (projectile-project-p))
          (list ""
                (funcall (telephone-line-projectile-segment) face)
                (propertize
                 (concat "/"
                         (file-relative-name (file-truename (buffer-file-name))
                                             (projectile-project-root)))
                 'help-echo (buffer-file-name)))
        (buffer-file-name)))
     (t (buffer-name))))

  (telephone-line-defsegment +telephone/get-position ()
    `(,(concat "%lL:%cC"
               (if (not mark-active)
                   ""
                 (format " | %dc" (- (+ 1 (region-end)) (region-beginning)))))))

  (setq-default
   telephone-line-lhs '((mode telephone-line-major-mode-segment)
                        (file-info telephone-line-input-info-segment)
                        (position +telephone/get-position)
                        (accent   +telephone/buffer-or-filename
                                  telephone-line-process-segment))
   telephone-line-rhs '((accent telephone-line-flycheck-segment telephone-line-misc-info-segment
                                telephone-line-projectile-segment)
                        (file-info telephone-line-filesize-segment)
                        (evil  telephone-line-evil-tag-segment)))
  (telephone-line-mode))

Olivetti

Olivetti provides a focus mode for Emacs, which makes it look a bit nicer with fringes. I also define +olivetti-mode which will remember and clear up any window configurations on the frame, then when turned off will reinsert them - provides a nice way to quickly focus on a buffer.

(use-package olivetti
  :commands (+olivetti-mode)
  :general
  (leader
    "to" #'+olivetti-mode)
  :init
  (setq-default olivetti-body-width 0.6)
  (setq olivetti-style nil)
  (add-hook 'olivetti-mode-on-hook  (proc (interactive) (text-scale-increase 1)))
  (add-hook 'olivetti-mode-off-hook (proc (interactive) (text-scale-decrease 1)))
  :config
  (defun +olivetti-mode ()
    (interactive)
    (if (not olivetti-mode)
        (progn
          (window-configuration-to-register 1)
          (delete-other-windows)
          (setq +olivetti/prev-mode-line mode-line-format)
          (setq mode-line-format nil)
          (olivetti-mode t))
      (jump-to-register 1)
      (setq mode-line-format +olivetti/prev-mode-line)
      (olivetti-mode 0))))

Small packages

ISearch

(use-package isearch
  :straight nil
  :general
  (:keymaps 'isearch-mode-map
     "M-s" #'isearch-repeat-forward))

Info

(use-package info
  :straight nil
  :general
  (nmmap
    :keymaps 'Info-mode-map
    "h" #'evil-backward-char
    "k" #'evil-previous-line
    "l" #'evil-forward-char
    "H" #'Info-history-back
    "L" #'Info-history-forward))

Display line numbers

I don't like using this mode by default, but I'd like to configure it if possible. Line numbers are a necessary evil a lot of times, and it's useful for presentations.

(use-package display-line-numbers
  :straight nil
  :commands display-line-numbers-mode
  :general
  (leader
    "tl" #'display-line-numbers-mode)
  :init
  (setq-default display-line-numbers-type 'relative))

xref

Find definitions, references using tags for free! Such an underrated utility, particularly now that I'm not using Eglot (in some sense, returning to the nature of Emacs). All you need is a way of generating tags, probably a make recipe.

(use-package xref
  :straight nil
  :display
  ("\\*xref\\*"
   (display-buffer-at-bottom)
   (inhibit-duplicate-buffer . t)
   (window-height . 0.25))
  :general
  (leader
    :infix "ct"
    "t" #'xref-find-apropos
    "d" #'xref-find-definitions
    "r" #'xref-find-references)
  (nmmap
    :keymaps 'xref--xref-buffer-mode-map
    "RET" #'xref-goto-xref
    "J" #'xref-next-line
    "K" #'xref-prev-line
    "g" #'xref-revert-buffer
    "q" #'quit-window))

Hl-line

Hl-line is a useful tool, best line indicator in the game.

(use-package hl-line
  :defer t
  :hook (text-mode-hook . hl-line-mode))

Recentf

Recentf makes it easy to

(use-package recentf
  :straight nil
  :hook (emacs-startup-hook . recentf-mode))

Projectile

Setup projectile, along with the tags command.

(use-package projectile
  :after evil
  :hook (emacs-startup-hook . projectile-mode)
  :general
  (leader "p" #'projectile-command-map)
  :init
  (setq projectile-tags-command "ctags -Re -f \"%s\" %s \"%s\""))

Counsel projectile

Counsel projectile provides the ivy interface to projectile commands, which is really useful.

(use-package counsel-projectile
  :after (projectile counsel)
  :config
  (counsel-projectile-mode +1))

Avy

Setup avy with leader. As I use avy-goto-char-timer a lot, use the C-s bind which replaces isearch. Switch isearch to M-s in case I need to use it.

(use-package avy
  :after evil
  :general
  (leader
    :infix "s"
    "l" #'avy-goto-line)
  (nmmap
    (kbd "C-s") #'avy-goto-char-timer
    (kbd "M-s") #'isearch-forward))

Ace window

Though evil provides a great many features in terms of window management, much greater than what's easily available in Emacs, ace window can provide some nicer chords for higher management of windows (closing, switching, etc).

(use-package ace-window
  :after evil
  :custom
  (aw-keys '(?a ?s ?d ?f ?g ?h ?j ?k ?l))
  :general
 (nmmap
    [remap evil-window-next] #'ace-window))

Helpful

Basic setup that replaces commands and configures display-buffer-alist for helpful.

(use-package helpful
  :after ivy
  :commands (helpful-callable helpful-variable)
  :general
  (general-def
    [remap describe-function] #'helpful-callable
    [remap describe-variable] #'helpful-variable
    [remap describe-key]      #'helpful-key)
  :display
  ("\\*[Hh]elp.*"
   (display-buffer-at-bottom)
   (inhibit-duplicate-buffer . t)
   (window-height . 0.25))
  :config
  (evil-define-key 'normal helpful-mode-map "q" #'quit-window))

Which-key

Pretty simple, just activate after init.

(use-package which-key
  :config
  (which-key-mode))

Keychord

Keychord is only really here for this one chord I wish to define: "jk" for exiting insert state. Otherwise, I don't really need it.

(use-package key-chord
  :after evil
  :config
  (key-chord-define evil-insert-state-map "jk" #'evil-normal-state)
  (key-chord-mode))

(Rip)grep

Grep is likely one of the most important programs ever invented; a must-have tool for any Linux users inventory. It is a searching utility that allows one to search files for certain regex patterns. The fact that there have been so many attempts to replace grep (with limited success) only goes to show how important its general function is to people.

Ripgrep is a grep-like utility written in Rust. It subsumes not only the ability to search a given file but also to search multiple files within a directory (which is usually only done by composing the program find with grep to search multiple files). It is incredibly fast by virtue of its regex optimisations and the use of ignore files such as .gitignore to filter files when searching.

Grep has default Emacs utilities that use a compilation style buffer to search a variety of differing data sets. grep searches files, rgrep searches in a directory using the find binary and zgrep searches archives. This is a great solution for most computer environments as basically all of them will have grep and find installed. Even when you ssh into a remote machine, they're likely to have these tools.

The ripgrep package provides utilities to ripgrep projects and files for strings via the rg binary. Though ivy comes with counsel-rg using it makes me dependent on the ivy framework, and this configuration is intentionally built to be modular and switchable. Of course, this requires installing the rg binary which is available in most repositories nowadays.

Grep

(use-package grep
  :display
  ("grep\\*"
   (display-buffer-reuse-window)
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :straight nil
  :general
  (leader
    "sd" #'rgrep))

rg

(use-package rg
  :after grep
  :general
  (leader
    "sR" #'rg)
  (:keymaps 'rg-mode-map
   "]]" #'rg-next-file
   "[[" #'rg-prev-file
   "q"  #'quit-window)
  :init
  (setq rg-group-result t
        rg-hide-command t
        rg-show-columns nil
        rg-show-header t
        rg-custom-type-aliases nil
        rg-default-alias-fallback "all"
        rg-buffer-name "*ripgrep*"))

All the Icons

Nice set of icons with a great user interface to manage them.

(use-package all-the-icons
  :straight t
  :defer t
  :commands (all-the-icons-insert)
  :general
  (leader
    "ie" #'all-the-icons-insert))

Applications

Dashboard

Dashboard creates a custom dashboard for Emacs that replaces the initial startup screen in default Emacs.

(use-package dashboard
  :straight t
  :demand t
  :general
  (leader
    "ab" #'dashboard-refresh-buffer)
  (:states '(normal motion emacs)
   :keymaps 'dashboard-mode-map
   "q" (proc (interactive) (kill-this-buffer)))
  (nmmap
    :keymaps 'dashboard-mode-map
    "r" #'dashboard-jump-to-recent-files
    "p" #'dashboard-jump-to-projects
    "}" #'dashboard-next-section
    "{" #'dashboard-previous-section)
  :init
  (setq initial-buffer-choice nil
        dashboard-banner-logo-title "Oreomacs"
        dashboard-center-content t
        dashboard-set-init-info t
        dashboard-startup-banner (no-littering-expand-etc-file-name "dashboard/logo.png")
        dashboard-set-footer t
        dashboard-set-navigator t
        dashboard-items '((projects . 5)
                          (recents . 5)))
  :config
  (dashboard-setup-startup-hook))

EWW

(use-package eww
  :defer t
  :straight nil
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-eww-setup)))

Calendar

Calendar is a simple inbuilt application within Emacs that helps with date functionalities. I add functionality to copy dates from the calendar to the kill ring and bind it to "Y".

(use-package calendar
  :straight nil
  :defer t
  :commands (+calendar/copy-date +calendar/toggle-calendar)
  :display
  ("\\*Calendar\\*"
   (display-buffer-at-bottom)
   (inhibit-duplicate-buffer . t)
   (window-height . 0.17))
  :general
  (nmmap
    :keymaps 'calendar-mode-map
   "Y" #'+calendar/copy-date)
  (leader
    "ad" #'+calendar/toggle-calendar)
  :config
  (defun +calendar/copy-date ()
    "Copy date under cursor into kill ring."
    (interactive)
    (if (use-region-p)
        (call-interactively #'kill-ring-save)
      (let ((date (calendar-cursor-to-date)))
        (when date
          (setq date (encode-time 0 0 0 (nth 1 date) (nth 0 date) (nth 2 date)))
          (kill-new (format-time-string "%Y-%m-%d" date))))))
  (+oreo/create-toggle-function
   +calendar/toggle-calendar
   "*Calendar*"
   calendar
   nil))

Mail

Mail is a funny thing; most people use it just for business or advertising and it's come out of use in terms of personal communication in the west for the most part (largely due to "social" media applications). However, this isn't true for the open source and free software movement who heavily use mail for communication.

Integrating mail into Emacs helps as I can send source code and integrate it into my workflow just a bit better.

Notmuch

(use-package notmuch
  :defer t
  :commands (notmuch +mail/flag-thread)
  :general
  (leader "am" #'notmuch)
  (nmap
    :keymaps 'notmuch-search-mode-map
    "f" #'+mail/flag-thread)
  :init
  (defconst +mail/signature "---------------\nAryadev Chavali")
  (defconst +mail/local-dir (concat user-emacs-directory ".mail/"))
  (setq notmuch-show-logo nil
        notmuch-search-oldest-first nil
        notmuch-hello-sections '(notmuch-hello-insert-saved-searches
                                 notmuch-hello-insert-alltags
                                 notmuch-hello-insert-recent-searches)
        notmuch-archive-tags '("-inbox" "-unread" "+archive")
        mail-signature +mail/signature
        mail-default-directory +mail/local-dir
        mail-source-directory +mail/local-dir
        message-signature +mail/signature
        message-auto-save-directory +mail/local-dir
        message-directory +mail/local-dir)

  (defun +mail/sync-mail ()
    "Sync mail via mbsync."
    (interactive)
    (start-process-shell-command "" nil "mbsync -a"))
  (defun +mail/trash-junk ()
    "Delete any mail in junk"
    (interactive)
    (start-process-shell-command "" nil "notmuch search --output=files --format=text0 tag:deleted tag:spam tag:trash tag:junk | xargs -r0 rm"))
  :config
  (defun +mail/flag-thread (&optional unflag beg end)
    (interactive (cons current-prefix-arg (notmuch-interactive-region)))
    (notmuch-search-tag
     (notmuch-tag-change-list '("-inbox" "+flagged") unflag) beg end)
    (when (eq beg end)
      (notmuch-search-next-thread)))
  (advice-add #'notmuch-poll-and-refresh-this-buffer :before
              #'+mail/sync-mail)
  (advice-add #'notmuch-poll-and-refresh-this-buffer :after
              #'+mail/trash-junk)
  (with-eval-after-load "evil-collection"
    (evil-collection-notmuch-setup)))

Smtpmail

(use-package smtpmail
  :after notmuch
  :commands mail-send
  :custom
  (smtpmail-smtp-server "mail.aryadevchavali.com")
  (smtpmail-smtp-user "aryadev")
  (smtpmail-smtp-service 587)
  (smtpmail-stream-type 'starttls)
  :init
  (setq send-mail-function #'smtpmail-send-it
        message-send-mail-function #'smtpmail-send-it))

Dired

Setup for dired. Make dired-hide-details-mode the default mode when using dired-mode, as it removes the clutter. Setup evil collection for dired (even though dired doesn't really conflict with evil, there are some corners I'd like to adjust).

(use-package dired
  :defer t
  :straight nil
  :commands (dired find-dired)
  :init
  (setq-default dired-listing-switches "-AFBl --group-directories-first"
                dired-omit-files "^\\.")
  (defvar +dired/omit-mode nil)
  (defun +dired/omit-dot-files ()
    (interactive)
    (setq-local +dired/omit-mode (not +dired/omit-mode))
    (dired-omit-mode (if +dired/omit-mode 1 -1))
    (revert-buffer))
  :hook
  (dired-mode-hook              . dired-hide-details-mode)
  (dired-mode-hook              . auto-revert-mode)
  (dired-hide-details-mode-hook . +dired/omit-dot-files)
  :general
  (nmmap
    :keymaps 'dired-mode-map
    "T" #'dired-create-empty-file)
  (leader
    :infix "d"
    "w" #'wdired-change-to-wdired-mode
    "f" #'find-dired
    "d" #'dired
    "D" #'dired-other-frame
    "l" (proc (interactive) (find-dired "~/Text/PDFs/" "-iname 'cs[0-9][0-9][0-9].pdf' -or -iname 'ma[0-9][0-9][0-9]*.pdf'")))
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-dired-setup))

  (defun +dired/insert-all-subdirectories ()
    "Insert all subdirectories currently viewable."
    (interactive)
    (dired-mark-directories nil)
    (mapcar #'dired-insert-subdir (dired-get-marked-files))
    (dired-unmark-all-marks))

  (nmmap
    :keymaps 'dired-mode-map
    "SPC"   nil
    "SPC ," nil)

  (local-leader
    :keymaps 'dired-mode-map
    "l" #'dired-maybe-insert-subdir
    "m" #'dired-mark-files-regexp
    "u" #'dired-undo))

fd-dired

Uses fd for finding file results in a directory: find-dired -> fd-dired.

(use-package fd-dired
  :after dired
  :straight t
  :general
  (leader
    "dF" #'fd-dired))

Xwidget

Xwidget is a package (must be compiled at source) which allows for the insertion of arbitrary xwidgets into Emacs through buffers. One of its premier uses is in navigating the web which it provides through the function xwidget-webkit-browse-url. This renders a fully functional web browser within Emacs.

Though I am not to keen on using Emacs to browse the web via xwidget (EWW does a good job on its own), I am very interested in its capability to render full fledged web pages which include JavaScript, as it may come of use when doing web development. I can see the results of work very quickly without switching windows or workspaces.

Xwidget Core

(use-package xwidget
  :straight nil
  :display
  ("\\*xwidget.*"
   (display-buffer-pop-up-frame))
  :general
  (leader "au" #'xwidget-webkit-browse-url)
  (nmmap
    :keymaps 'xwidget-webkit-mode-map
    "q"         #'quit-window
    "h"         #'xwidget-webkit-scroll-backward
    "j"         #'xwidget-webkit-scroll-up
    "k"         #'xwidget-webkit-scroll-down
    "l"         #'xwidget-webkit-scroll-forward
    "+"         #'xwidget-webkit-zoom-in
    "-"         #'xwidget-webkit-zoom-out
    (kbd "C-f") #'xwidget-webkit-scroll-up
    (kbd "C-b") #'xwidget-webkit-scroll-down
    "H"         #'xwidget-webkit-back
    "L"         #'xwidget-webkit-forward
    "gu"        #'xwidget-webkit-browse-url
    "gr"        #'xwidget-webkit-reload
    "gg"        #'xwidget-webkit-scroll-top
    "G"         #'xwidget-webkit-scroll-bottom))

Xwidget Extensions

Define a function +xwidget/render-file that reads a file name and presents it in an xwidget. If the current file is an HTML file, ask if user wants to open current file. Bind it to aU in the leader.

Also define a function +xwidget/search-query that first asks the user what search engine they want to use (Duck Duck Go and DevDocs currently) then asks for a query, which it parses then presents in an xwidget window. Bind to as in the leader.

(use-package xwidget
  :straight nil
  :commands (+xwidget/render-file +xwidget/search)
  :general
  (leader
    "aU" #'+xwidget/render-file
    "as" #'+xwidget/search)
  :config
  (setenv "WEBKIT_FORCE_SANDBOX" "0")
  (defun +xwidget/render-file (&optional FORCE)
    "Find file (or use current file) and render in xwidget."
    (interactive)
    (cond
     ((and (not FORCE) (or (string= (replace-regexp-in-string ".*.html"
                                                           "html" (buffer-name)) "html")
                        (eq major-mode 'web-mode)
                        (eq major-mode 'html-mode))) ; If in html file
      (if (y-or-n-p "Open current file?: ") ; Maybe they want to open a separate file
          (xwidget-webkit-browse-url (format "file://%s" (buffer-file-name)))
        (+xwidget/render-file t))) ; recurse and open file via prompt
     (t
      (xwidget-webkit-browse-url
       (format "file://%s" (read-file-name "Enter file to open: "))))))

  (defun +xwidget/search ()
    "Run a search query on some search engine and display in
xwidget."
    (interactive)
    (let* ((engine (completing-read "Engine: " '("duckduckgo.com" "devdocs.io") nil t))
           (query-raw (read-string "Enter query: "))
           (query
            (cond
             ((string= engine "duckduckgo.com") query-raw)
             ((string= engine "devdocs.io") (concat "_ " query-raw)))))
      (xwidget-webkit-browse-url (concat "https://" engine "/?q=" query)))))

Eshell

Why Eshell?

Eshell is the integrated shell environment for Emacs. I argue that it is the best shell/command interpreter to use in Emacs.

Eshell is unlike the alternatives in Emacs as it's a shell first, not a terminal emulator. It has the ability to spoof some aspects of a terminal emulator (through the shell parser), but it is NOT a terminal emulator.

I'd say the killer benefits of eshell (which would appeal to Emacs users) are due to eshell being written in Emacs lisp:

  • incredible integration with Emacs utilities (such as dired, find-file, any read functions, to name a few)
  • very extensible, easy to write new commands which leverage Emacs commands as well as external utilities
  • agnostic of platform: "eshell/cd" will call the underlying change directory function for you, so commands will (usually) mean the same thing regardless of platform

    • this means as long as Emacs runs, you can run eshell

However, my favourite feature of eshell is the set of evaluators that run on command input. Some of the benefits listed above come as a result of this powerful feature. These evaluators are describe below.

Lisp evaluator: works on braced expressions, evaluating them as Lisp expressions. Any returned objects are printed. This makes eshell an Emacs Lisp REPL!

External evaluator: works within curly braces, evaluating them via some external shell process (like sh). This makes eshell a (dumb) terminal emulator!

The alias evaluator is the top level evaluator. It is the main evaluator for each expression given to eshell. When given an expression it tries to evaluate it by testing against these conditions (going to the next if it doesn't find it):

  • it's an alias defined by the user or in the eshell/ namespace of functions (simplest evaluator)
  • it's some form of lisp expression (lisp evaluator)
  • it's an external command (bash evaluator)

Essentially, you get the best of both Emacs and external shell programs ALL WITHIN Emacs for free.

Eshell functionality

Bind some evil-like movements for easy shell usage, and a toggle function to pull up the eshell quickly.

(use-package eshell
  :commands +shell/toggle-eshell
  :general
  (leader
    "tt" #'+shell/toggle-eshell)
  :init
  (add-hook
   'eshell-mode-hook
   (proc
    (interactive)
    (general-def
      :states '(normal insert)
      :keymaps 'eshell-mode-map
      "M-l" (proc (interactive) (eshell/clear)
      "M-j" #'eshell-next-matching-input-from-input
      "M-k" #'eshell-previous-matching-input-from-input)
    (local-leader
      :keymaps 'eshell-mode-map
      "c" (proc (interactive) (eshell/clear)
                   (recenter))
      "k" #'eshell-kill-process))))
  :config
  (+oreo/create-toggle-function
   +shell/toggle-eshell
   "*eshell*"
   eshell
   t))

Eshell pretty symbols and display

Pretty symbols and a display record.

(use-package eshell
  :pretty
  (eshell-mode-hook
   ("lambda"  . "λ")
   ("numberp" . "")
   ("t"       . "⊨")
   ("nil"     . "Ø"))
  :display
  ("\\*e?shell\\*" ; for general shells as well
   (display-buffer-at-bottom)
   (window-height . 0.25)))

Eshell variables and aliases

Set some sane defaults, a banner and a prompt. The prompt checks for a git repo in the current directory and provides some extra information in that case (in particular, branch name and if there any changes that haven't been committed).

Also add eshell/goto, which is actually a command accessible from within eshell (this is because eshell/* creates an accessible function within eshell with name *). eshell/goto makes it easier to change directories by using Emacs to provide an interface (which is much faster than cd ..; ls -l).

(use-package eshell
  :config
  (defun +eshell/get-git-properties ()
    (let* ((git-branch (shell-command-to-string "git branch"))
           (is-repo (string= (if (string= git-branch "") ""
                               (substring git-branch 0 1)) "*")))
      (if (not is-repo)
          ""
        (concat
         "("
         (nth 2 (split-string git-branch "\n\\|\\*\\| "))
         "<"
         (if (string= "" (shell-command-to-string "git status | grep 'up to date'"))
             "×"
           "✓")
         ">)"))))
  (setq eshell-cmpl-ignore-case t
        eshell-cd-on-directory t
        eshell-banner-message (concat (shell-command-to-string "figlet eshell") "\n")
        eshell-prompt-function
        (proc
         (let ((properties (+eshell/get-git-properties)))
           (concat
            properties
            (format "[%s]\n" (abbreviate-file-name (eshell/pwd)))
            "λ ")))
        eshell-prompt-regexp "^λ ")

  (defun eshell/goto (&rest args)
    "Use `read-directory-name' to change directories."
    (eshell/cd (list (read-directory-name "Enter directory to go to:")))))

Elfeed

Elfeed is the perfect RSS feed reader, integrated into Emacs perfectly. I've got a set of feeds that I use for a large variety of stuff, mostly media and entertainment. I've also bound "<leader> ar" to elfeed for loading the system.

(use-package elfeed
  :general
  (leader "ar" #'elfeed)
  (nmmap
    :keymaps 'elfeed-search-mode-map
    "gr"       #'elfeed-update
    "s"        #'elfeed-search-live-filter
    "<return>" #'elfeed-search-show-entry)
  :init
  (setq elfeed-db-directory (no-littering-expand-var-file-name "elfeed/"))
  (setq +rss/feed-urls
        '(("Arch Linux"
           "https://www.archlinux.org/feeds/news/"
           Linux)
          ("LEMMiNO"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCRcgy6GzDeccI7dkbbBna3Q"
           YouTube Stories)
          ("The Onion"
           "https://www.theonion.com/rss"
           Social)
          ("Stack exchange"
           "http://morss.aryadevchavali.com/stackexchange.com/feeds/questions"
           Social)
          ("Dark Sominium"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UC_e39rWdkQqo5-LbiLiU10g"
           YouTube Stories)
          ("Dark Sominium Music"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCkLiZ_zLynyNd5fd62hg1Kw"
           YouTube Music)
          ("Nexpo"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCpFFItkfZz1qz5PpHpqzYBw"
           YouTube)
          ("Techquickie"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UC0vBXGSyV14uvJ4hECDOl0Q"
           YouTube)
          ("3B1B"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCYO_jab_esuFRV4b17AJtAw"
           YouTube)
          ("Fredrik Knusden"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCbWcXB0PoqOsAvAdfzWMf0w"
           YouTube Stories)
          ("Barely Sociable"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UC9PIn6-XuRKZ5HmYeu46AIw"
           YouTube Stories)
          ("Atrocity Guide"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCn8OYopT9e8tng-CGEWzfmw"
           YouTube Stories)
          ("Hacker News"
           "http://morss.aryadevchavali.com/news.ycombinator.com/rss"
           Social)
          ("Hacker Factor"
           "https://www.hackerfactor.com/blog/index.php?/feeds/index.rss2"
           Social)
          ("BBC Top News"
           "http://morss.aryadevchavali.com/feeds.bbci.co.uk/news/rss.xml"
           News)
          ("BBC Tech News"
           "http://morss.aryadevchavali.com/feeds.bbci.co.uk/news/technology/rss.xml"
           News)))
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-elfeed-setup))
  (setq elfeed-feeds (cl-map 'list #'(lambda (item)
                                       (append (list (nth 1 item)) (cdr (cdr item))))
                             +rss/feed-urls)))

Magit

Magit is the git porcelain for Emacs, which perfectly encapsulates the git cli. In this case I just need to setup the bindings for it. As magit will definitely load after evil (as it must be run by a binding, and evil will load after init), I can use evil-collection freely. Also, define an auto insert for commit messages so that I don't need to write everything myself.

(use-package magit
  :defer t
  :display
  ("magit:.*"
   (display-buffer-same-window)
   (inhibit-duplicate-buffer . t))
  ("magit-diff:.*"
   (display-buffer-below-selected))
  ("magit-log:.*"
   (display-buffer-same-window))
  :general
  (leader "g" #'magit-status)
  :init
  (setq vc-follow-symlinks t)
  (with-eval-after-load "autoinsert"
    (define-auto-insert '("COMMIT_EDITMSG" , "Commit")
      '(nil
        "(" (read-string "Enter feature/module: ") ")"
        (read-string "Enter simple description: ") "\n\n"
        _)))
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-magit-setup)))

IBuffer

(use-package ibuffer
  :general
  (leader
    "bi" #'ibuffer)
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-ibuffer-setup)))

Processes

Emacs has two systems for process management:

  • proced: a general 'top' like interface which allows general management of linux processes
  • list-processes: a specific Emacs based system that lists processes spawned by Emacs (similar to a top for Emacs specifically)

Proced

Core proced config, just a few bindings and evil collection setup.

(use-package proced
  :straight nil
  :general
  (leader
    "ap" #'proced)
  (nmap
    :keymaps 'proced-mode-map
    "za" #'proced-toggle-auto-update)
  :display
  ("\\*Proced\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :init
  (setq proced-auto-update-interval 0.5)
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-proced-setup)))

Along with that I setup the package proced-narrow which allows further filtering of the process list.

(use-package proced-narrow
  :straight t
  :after proced
  :general
  (nmap
    :keymaps 'proced-mode-map
    "%" #'proced-narrow))

Calculator

Surprise, surprise Emacs comes with a calculator.

Greater surprise, this thing is over powered beyond just simple calculation:

  • Matrix calculations
  • Generalised calculus operations
  • Equation solvers for n-degree multi-variable polynomials
  • Embedded mode!

calc-mode is a calculator system within Emacs that provides a diverse array of mathematical operations. It uses reverse polish notation to do calculations (though there is a standard infix algebraic notation mode).

(use-package calc
  :straight nil
  :display
  ("*Calculator*"
   (display-buffer-at-bottom)
   (window-height . 0.18))
  :general
  (leader
    "ac" #'calc-dispatch
    "tc" #'calc-embedded)
  :init
  (setq calc-algebraic-mode t)
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-calc-setup)))

Calctex

calc-mode also has a 3rd party package called calctex. It renders mathematical expressions within calc as if they were rendered in TeX. You can also copy the expressions in their TeX forms, which is pretty useful when writing a paper. I've set a very specific lock on this repository as it's got quite a messy work-tree and this commit seems to work for me given the various TeX utilities installed via Arch.

(use-package calctex
  :after calc
  :straight (calctex :type git :host github :repo "johnbcoughlin/calctex")
  :hook (calc-mode-hook . calctex-mode))

Ledger

(use-package ledger-mode
  :defer t)

(use-package evil-ledger
  :after ledger-mode)

Zone

Of course Emacs has a cool screensaver software.

(use-package zone-matrix
  :straight t
  :after dashboard
  :init
  (setq zone-programs
        [zone-pgm-jitter
         zone-pgm-putz-with-case
         zone-pgm-dissolve
         zone-pgm-whack-chars
         zone-pgm-drip
         zone-pgm-rat-race
         zone-pgm-random-life
         zone-matrix
         ])
  :config
  (zone-when-idle 15))

Major modes, programming and text

Setups for common major modes and languages.

Text Configuration

Standard packages and configurations for the text-mode.

Flyspell

Flyspell allows me to quickly spell check text documents. I use flyspell primarily in org mode, as that is my preferred prose writing software, but I also need it in commit messages and so on. So flyspell-mode should be hooked to text-mode.

(use-package flyspell
  :hook (text-mode-hook . flyspell-mode)
  :general
  (nmmap
    :keymaps 'text-mode-map
    (kbd "M-C") #'flyspell-correct-word-before-point
    (kbd "M-c") #'flyspell-auto-correct-word))

Undo tree

Undo tree is a system for handling the history of any buffer. It provides a very nice 'tree' visualiser (hence the name) for revisions of a file or buffer, and allows you to move around different versions at once, without using a VCS like git (all in Emacs).

(use-package undo-tree
  :straight t
  :hook (after-init-hook . global-undo-tree-mode)
  :general
  (leader
    "tu" #'undo-tree-visualize))

Whitespace

Deleting whitespace, highlighting when going beyond the 80th character limit, all good stuff. I don't want to highlight whitespace for general mode categories (Lisp shouldn't really have an 80 character limit), so set it for specific modes need the help.

(use-package whitespace
  :straight nil
  :general
  (nmmap
    "M--"   #'whitespace-cleanup)
  (leader
    "ts" #'whitespace-mode)
  :hook
  (before-save-hook  . whitespace-cleanup)
  (c-mode-hook       . whitespace-mode)
  (c++-mode-hook     . whitespace-mode)
  (haskell-mode-hook . whitespace-mode)
  (python-mode-hook  . whitespace-mode)
  :init
  (setq whitespace-style '(face lines-tail spaces tabs tab-mark trailing newline)
        whitespace-line-column 80))

Set auto-fill-mode for all text-modes

Auto fill mode is nice for most text modes, 80 char limit is great.

(add-hook 'text-mode-hook #'auto-fill-mode)

Smartparens

Smartparens is a smarter electric-parens, it's much more aware of context and easier to use.

(use-package smartparens
  :hook
  (prog-mode-hook . smartparens-mode)
  (text-mode-hook . smartparens-mode)
  :after evil
  :config
  (setq sp-highlight-pair-overlay nil
        sp-highlight-wrap-overlay t
        sp-highlight-wrap-tag-overlay t)

  (let ((unless-list '(sp-point-before-word-p
                       sp-point-after-word-p
                       sp-point-before-same-p)))
    (sp-pair "'"  nil :unless unless-list)
    (sp-pair "\"" nil :unless unless-list))
  (sp-local-pair sp-lisp-modes "(" ")" :unless '(:rem sp-point-before-same-p))
  (require 'smartparens-config))

Show-paren-mode

Show parenthesis for Emacs

(add-hook 'prog-mode-hook #'show-paren-mode)

Programming Configuration

Eldoc

Eldoc presents documentation to the user upon placing ones cursor upon any symbol. This is very useful when programming as it:

  • presents the arguments of functions while writing calls for them
  • presents typing and documentation of variables
(use-package eldoc
  :straight nil
  :hook (prog-mode-hook . eldoc-mode)
  :init
  (global-eldoc-mode 1))

(use-package eldoc-box
  :hook (eldoc-mode-hook . eldoc-box-hover-mode)
  :init
  (setq eldoc-box-position-function #'eldoc-box--default-upper-corner-position-function
        eldoc-box-clear-with-C-g t))

Eglot

Eglot is a library of packages to communicate with LSP servers for better programming capabilities. Interactions with a server provide results to the client, done through JSON.

(use-package eglot
  :after project
  :defer t
  :general
  (leader
    :keymaps 'eglot-mode-map
    :infix "c"
    "f" #'eglot-format
    "a" #'eglot-code-actions
    "r" #'eglot-rename
    "R" #'eglot-reconnect)
  ;; :init
  ;; (setq eglot-stay-out-of '(flymake))
  :config
  (add-to-list 'eglot-server-programs '((c++-mode c-mode) "clangd"))
  (add-to-list 'eglot-server-programs `(csharp-mode "~/.local/src/omnisharp-roslyn/run" "-lsp")))

Flycheck

Flycheck is the checking system for Emacs. I don't necessarily like having all my code checked all the time, so I haven't added a hook to prog-mode as it would be better for me to decide when I want checking and when I don't.

(use-package flycheck
  :commands (flycheck-mode flycheck-list-errors)
  :hook
  (prog-mode-hook . flycheck-mode)
  :general
  (leader
    "tf" #'flycheck-mode
    "cx" #'flycheck-list-errors
    "cJ" #'flycheck-next-error
    "cK" #'flycheck-previous-error)
  :display
  ("\\*Flycheck.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-flycheck-setup)))

Tabs and spaces

By default, turn off tabs and set the tab width to two.

(setq-default indent-tabs-mode nil
              tab-width 2)

However, if necessary later, define a function that may activate tabs locally.

(defun +oreo/activate-tabs ()
  (interactive)
  (setq-local indent-tabs-mode t))

Compilation

Colourising the compilation buffer so ANSI colour codes get computed.

(use-package compile
  :defer t
  :straight nil
  :display
  ("\\*compilation\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (defun +compile/colourise ()
    "Colourise the emacs compilation buffer."
    (interactive)
    (let ((inhibit-read-only t))
      (ansi-color-apply-on-region (point-min) (point-max))))
  (add-hook 'compilation-filter-hook #'+compile/colourise))

Highlight todo items

TODO items are highlighted in org buffers, but not necessarily in every buffer. This minor mode highlights all TODO like items via a list of strings to match. It also configures faces to use when highlighting.

(use-package hl-todo
  :after prog-mode
  :hook (prog-mode-hook . hl-todo-mode)
  :init
  (setq hl-todo-keyword-faces
        '(("TODO"  . "#E50000")
          ("WAIT"  . "#00CC00")
          ("FIXME" . "#d02090")))
  )

Hide-show mode

Turn on hs-minor-mode for all prog-mode.

(use-package hideshow
  :straight nil
  :hook (prog-mode-hook . hs-minor-mode))

PDF

PDFs are a format for (somewhat) immutable text and reports with great formatting options. Though Emacs isn't my favourite application for viewing PDFs (I highly recommend Zathura), similar to most things with Emacs, having a PDF viewer builtin can be a very useful asset.

For example if I were editing an org document which I was eventually compiling into a PDF, my workflow would be much smoother with a PDF viewer within Emacs that I can open on another pane.

PDF tools

pdf-tools provides the necessary functionality for viewing PDFs. There is no proper PDF viewing without this package. evil-collection provides a setup for this mode, so use that.

(use-package pdf-tools
  :mode ("\\.[pP][dD][fF]" . pdf-view-mode)
  :straight t
  :display
  ("^.*pdf$"
   (display-buffer-same-window)
   (inhibit-duplicate-buffer . t))
  :config
  (pdf-tools-install-noverify)
  (with-eval-after-load "evil-collection"
    (evil-collection-pdf-setup)))

PDF grep

PDF grep is a Linux tool that allows for searches against PDFs similar to standard grep (but for PDFs!).

(use-package pdfgrep
  :after pdf-tools
  :hook (pdf-view-mode-hook . pdfgrep-mode)
  :general
  (nmap
    :keymaps 'pdf-view-mode-map
    "M-g"    #'pdfgrep))

SQL

(use-package sql
  :straight nil
  :init
  (setq sql-display-sqli-buffer-function nil))

Ada

Check out ada-mode*, my custom ada-mode that replaces the default one. This mode just colourises stuff, and uses eglot to do the important stuff.

(load-file (concat user-emacs-directory "elisp/ada-mode.el"))
(with-eval-after-load "eglot"
  (add-hook 'ada-mode-hook #'eglot))

NHexl

Hexl-mode is the inbuilt package within Emacs to edit hex and binary format buffers. There are a few problems with hexl-mode though, including an annoying prompt on revert-buffer.

Thus, nhexl-mode! It comes with a few other improvements. Check out the page yourself.

(use-package nhexl-mode
  :straight t
  :mode "\\.bin")

Org

Org Core Variables

Tons of variables for org-mode, including a ton of latex ones. Can't really explain because it sets up quite a lot of local stuff. Also I copy pasted the majority of this, tweaking it till it felt good. Doom Emacs was very helpful here.

(use-package org
  :defer t
  :custom
  (org-directory "~/Text")
  (org-edit-src-content-indentation 0)
  (org-goto-interface 'outline)
  (org-src-window-setup 'current-window)
  (org-indirect-buffer-display 'current-window)
  (org-export-backends '(ascii html latex odt))
  (org-imenu-depth 10)
  (org-link-frame-setup '((vm . vm-visit-folder-other-frame)
                          (vm-imap . vm-visit-imap-folder-other-frame)
                          (gnus . org-gnus-no-new-news)
                          (file . find-file-other-frame)
                          (wl . wl-other-frame)))
  (org-eldoc-breadcrumb-separator " → ")
  (org-enforce-todo-dependencies t)
  (org-fontify-quote-and-verse-blocks t)
  (org-fontify-whole-heading-line t)
  (org-footnote-auto-label 'plain)
  (org-hide-leading-stars t)
  (org-hide-emphasis-markers nil)
  (org-image-actual-width nil)
  (org-priority-faces '((?A . error) (?B . warning) (?C . success)))
  (org-startup-indented t)
  (org-startup-with-latex-preview t)
  (org-startup-folded 'content)
  (org-tags-column 0)
  (org-todo-keywords
   '((sequence "TODO" "DONE")
     (sequence "PROJ" "WAIT" "COMPLETE")))
  (org-use-sub-superscripts '{})
  (org-babel-load-languages '((emacs-lisp . t)
                              (lisp . t)
                              (C . t)
                              (python . t)
                              (shell . t)))
  (org-format-latex-options '(:foreground default :background default :scale 2
                              :html-foreground "Black" :html-background "Transparent"
                              :html-scale 1.0 :matchers ("begin" "$1" "$" "$$" "\\(" "\\[")))
  (org-latex-listings 'minted)
  (org-latex-minted-langs '((emacs-lisp "common-lisp")
                            (ledger "text")
                            (cc "c++")
                            (cperl "perl")
                            (shell-script "bash")
                            (caml "ocaml")))
  (org-latex-packages-alist '(("" "minted")))
  (org-latex-pdf-process
   '("latexmk -pdf -bibtex -f -shell-escape %f"))
  (org-latex-minted-options '(("style" "xcode")
                              ("linenos")
                              ("frame" "single")
                              ("mathescape")
                              ("fontfamily" "courier")
                              ("samepage" "false")
                              ("breaklines" "true")
                              ("breakanywhere" "true")
                              )))

Org Core Functionality

Hooks, prettify-symbols and records for auto insertion.

(use-package org
  :hook
  (org-mode-hook . prettify-symbols-mode)
  :display
  ("\\*Org Src.*"
   (display-buffer-same-window))
  :pretty
  (org-mode-hook
   ("#+begin_src" . "≫")
   ("#+end_src"   . "≪"))
  :init
  (with-eval-after-load "autoinsert"
    (define-auto-insert '("\\.org\\'" . "Org skeleton")
      '("Enter title: "
        "#+title: " str | (buffer-file-name) "\n"
        "#+author: " (read-string "Enter author: ") | user-full-name "\n"
        "#+description: " (read-string "Enter description: ") | "Description" "\n"
        "#+date: " (format-time-string "%Y-%m-%d" (current-time)) "\n"
        "* " _))))

Org Core Bindings

Some bindings for org mode.

(use-package org
  :after counsel
  :config
  (defun +org/swiper-goto ()
    (interactive)
    (swiper "^\\* "))
  :general
  (leader
    "fw" #'org-capture
    "fl" #'org-store-link
    "fi" #'org-insert-last-stored-link)
  (nmmap
    :keymaps 'org-mode-map
    [remap imenu] #'+org/swiper-goto)
  (local-leader
    :keymaps 'org-mode-map
    :infix "l"
    "i" #'org-insert-link
    "l" #'org-open-at-point)
  (local-leader
    :keymaps 'org-mode-map
    "t" #'org-todo
    "i" #'org-insert-structure-template
    "p" #'org-latex-preview
    "s" #'org-property-action
    "e" #'org-export-dispatch
    "o" #'org-edit-special))

Org agenda

Org agenda provides a nice viewing for schedules. With org mode it's a very tidy way to manage your time.

(use-package org-agenda
  :after (org evil)
  :straight nil
  :init
  (defconst +org/agenda-root "~/Text"
    "Root directory for all agenda files")
  (setq org-agenda-files (list (expand-file-name +org/agenda-root) (expand-file-name (concat +org/agenda-root "/Notes")) (expand-file-name "~/Projects/lpv/"))
        org-agenda-window-setup 'current-window
        org-agenda-skip-deadline-prewarning-if-scheduled t
        org-agenda-skip-scheduled-if-done t
        org-agenda-skip-deadline-if-done t)
  :config
  (evil-set-initial-state 'org-agenda-mode 'normal)
  :general
  (leader
    "fa" (proc (interactive) (find-file (completing-read "Enter directory: " org-agenda-files nil t)))
    "aa" #'org-agenda)
  (nmmap
    :keymaps 'org-agenda-mode-map
    "zd" #'org-agenda-day-view
    "zw" #'org-agenda-week-view
    "zm" #'org-agenda-month-view
    "gd" #'org-agenda-goto-date
    "RET" #'org-agenda-switch-to
    "J" #'org-agenda-later
    "K" #'org-agenda-earlier
    "t" #'org-agenda-todo
    "." #'org-agenda-goto-today
    "," #'org-agenda-goto-date
    "q" #'org-agenda-quit
    "r" #'org-agenda-redo))

Org clock-in

Org provides a nice timekeeping system that allows for managing how much time is taken per task. It even has an extensive reporting system to see how much time you spend on specific tasks or overall.

(use-package org-clock
  :after org
  :straight nil
  :init
  (defvar +org/clock-out-toggle-report nil
    "Non-nil means update the first clock report in the file every
time a clock out occurs.")
  :config
  (advice-add #'org-clock-out
              :after
              (proc (interactive)
                    (if +org/clock-out-toggle-report
                        (org-clock-report t))))
  :general
  (local-leader
    :keymaps 'org-mode-map
    :infix "c"
    "c" #'org-clock-in
    "o" #'org-clock-out
    "r" #'org-clock-report
    "t" (proc (interactive)
              (setq-local +org/clock-out-toggle-report
                          (not +org/clock-out-toggle-report)))))

Org on save

If +org/compile-to-pdf-on-save-p is non-nil, then compile to \(\LaTeX\) and run an async process to compile it to a PDF. Doesn't make Emacs hang (like org-latex-export-to-pdf) and doesn't randomly crash (like the async handler for org-export). Works really well with pdf-view-mode.

(use-package org
  :init
  (defvar +org/compile-to-pdf-on-save-p
    nil
    "Non-nil to activate compile functionality.")
  :general
  (local-leader
    :keymaps 'org-mode-map
    "C" (proc (interactive)
              (if (+org/compile-to-pdf-on-save-f)
                  (setq-local +org/compile-to-pdf-on-save-p nil)
                (setq-local +org/compile-to-pdf-on-save-p t))))
  :config
  (+oreo/create-auto-save
   +org/compile-to-pdf-on-save-f
   (and (eq major-mode 'org-mode) +org/compile-to-pdf-on-save-p)
   (start-process-shell-command "" "*pdflatex*" (concat "pdflatex -shell-escape "
                                                        (org-latex-export-to-latex)))))

Org ref

(use-package org-ref
  :straight t
  :after org
  :init
  (setq bibtex-files '("~/Text/bibliography.bib")
        bibtex-completion-bibliography '("~/Text/bibliography.bib")
        bibtex-completion-additional-search-fields '(keywords)))

Org message

Org message allows for the use of org mode when composing mails, generating HTML multipart emails. This integrates the WYSIWYG experience with mail in Emacs while also providing powerful text features with basically no learning curve (as long as you've already learnt the basics of org).

(use-package org-msg
  :hook (message-mode-hook . org-msg-mode)
  :config
  (setq org-msg-options "html-postamble:nil H:5 num:nil ^:{} toc:nil author:nil email:nil \\n:t tex:dvipng"
        org-msg-greeting-name-limit 3)

  (add-to-list 'org-msg-enforce-css
               '(img latex-fragment-inline
                     ((transform . ,(format "translateY(-1px) scale(%.3f)"
                                            (/ 1.0 (if (boundp 'preview-scale)
                                                       preview-scale 1.4))))
                      (margin . "0 -0.35em")))))

Org for evil

Evil org for some nice bindings.

(use-package evil-org
  :hook (org-mode-hook . evil-org-mode))

Org reveal

Org reveal allows one to export org files as HTML presentations via reveal.js. Pretty nifty and it's easy to use.

(use-package ox-reveal
  :after org
  :init
  (setq org-reveal-root "https://cdn.jsdelivr.net/npm/reveal.js"
        org-reveal-theme "sky"))

Org fragtog

Toggle latex fragments in org mode so you get fancy maths symbols. I use latex a bit in org mode as it is the premier way of getting mathematical symbols rendered, but org mode > latex.

Delimited environments are aplenty, escaped brackets and dollar signs are my favourite. Here's a snippet: $\int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}$.

(use-package org-fragtog
  :hook (org-mode-hook . org-fragtog-mode))

Org superstar

Org superstar adds cute little Unicode symbols for headers, much better than the default asterisks.

(use-package org-superstar
  :hook (org-mode-hook . org-superstar-mode))

C/C++

Setup for C and C++ modes via the cc-mode package. C and C++ are great languages for general purpose programming. My preferred choice when I want greater control over memory management.

cc-mode

(use-package cc-mode
  :defer t
  :hook
  (c-mode-hook   . auto-fill-mode)
  (c++-mode-hook . auto-fill-mode)
  :general
  (:keymaps '(c-mode-map c++-mode-map)
   :states '(normal motion visual)
   "(" #'c-beginning-of-statement
   ")" #'c-end-of-statement)
  :pretty
  (c-mode-hook
   ("puts"    . "φ")
   ("fputs"   . "ϕ")
   ("printf"  . "ω")
   ("fprintf" . "Ω")
   ("NULL"    . "Ø")
   ("true"    . "⊨")
   ("false"   . "⊭")
   ("!"       . "¬")
   ("&&"      . "⋀")
   ("||"      . "")
   ("for"     . "∀")
   ("return"  . "⟼"))
  (c++-mode-hook
   ("nullptr" . "Ø")
   ("string"  . "𝕊")
   ("vector"  . "")
   ("puts"    . "φ")
   ("fputs"   . "ϕ")
   ("printf"  . "ω")
   ("fprintf" . "Ω")
   ("NULL"    . "Ø")
   ("true"    . "⊨")
   ("false"   . "⊭")
   ("!"       . "¬")
   ("&&"      . "⋀")
   ("||"      . "")
   ("for"     . "∀")
   ("return"  . "⟼"))
  :init
  (setq-default c-basic-offset 2)
  (setq-default c-auto-newline nil)
  (setq-default c-default-style '((other . "user")))

  (with-eval-after-load "autoinsert"
    (define-auto-insert
      '("\\.c\\'" . "C skeleton")
      '(""
        "/* " (file-name-nondirectory (buffer-file-name (current-buffer))) "\n"
        " * Created: " (format-time-string "%Y-%m-%d") "\n"
        " * Author: " user-full-name "\n"
        " */\n"
        "\n"
        _))

    (define-auto-insert
      '("\\.cpp\\'" . "C++ skeleton")
      '(""
        "/* " (file-name-nondirectory (buffer-file-name (current-buffer))) "\n"
        " * Created: " (format-time-string "%Y-%m-%d") "\n"
        " * Author: " user-full-name "\n"
        " */\n"
        "\n"
        _)))
  :config
  (c-add-style
   "user"
   '((c-basic-offset . 2)
     (c-comment-only-line-offset . 0)
     (c-hanging-braces-alist (brace-list-open)
                             (brace-entry-open)
                             (substatement-open after)
                             (block-close . c-snug-do-while)
                             (arglist-cont-nonempty))
     (c-cleanup-list brace-else-brace)
     (c-offsets-alist
      (statement-block-intro . +)
      (substatement-open . 0)
      (access-label . -)
      (inline-open  . 0)
      (label . 0)
      (statement-cont . +)))))

Clang format

Clang format comes inbuilt with clang, so download that before using this. Formats C/C++ files depending on a format (checkout the Clang format config file in my dotfiles).

(use-package clang-format
  :straight nil
  :load-path "/usr/share/clang/"
  :after cc-mode
  :commands (+code/clang-format-region-or-buffer)
  :general
  (leader
    :keymaps '(c-mode-map c++-mode-map)
    "cf" #'+code/clang-format-region-or-buffer)
  :config
  (defvar +code/clang-format-automatically t
    "Automatically call clang-format every time save occurs in C/C++
buffer")

  (+oreo/create-auto-save
   +code/clang-format-on-save
   (and +code/clang-format-automatically
        (or (eq major-mode 'c-mode)
            (eq major-mode 'c++-mode)))
   (clang-format-buffer))

  (defun +code/clang-format-region-or-buffer ()
    (interactive)
    (if (mark)
        (clang-format-region (region-beginning) (region-end))
      (clang-format-buffer))))

Racket

A scheme with lots of stuff inside it. Using it for a language design book so it's useful to have some Emacs binds for it.

(use-package racket-mode
  :straight t
  :hook (racket-mode-hook . racket-xp-mode)
  :display
  ("\\*Racket.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :general
  (local-leader
    :keymaps 'racket-mode-map
    "r" #'racket-run
    "i" #'racket-repl
    "sr" #'racket-send-region
    "sd" #'racket-send-definition))

CSharp

I sometimes use C# when I'm bored or if I'm trying out a language feature. However, if I desperately needed an easy way to make a fast-ish API server or some kinda industrial level project then C# would probably be the language I would reach for.

(use-package csharp-mode
  :defer t
  :pretty
  (csharp-mode-hook
   ("null"      . "∅")
   ("string"    . "𝕊")
   ("List"      . "")
   ("WriteLine" . "φ")
   ("Write"     . "ω")
   ("true"      . "⊨")
   ("false"     . "⊭")
   ("!"         . "¬")
   ("&&"        . "⋀")
   ("||"        . "")
   ("for"       . "∀")
   ("return"    . "⟼")))

Java

I kinda dislike Java, but if necessary I will code in it. Might have to use an IDE for the cooler features, but use Emacs for editing. Just setup a style and some pretty symbols.

(use-package ob-java
  :straight nil
  :pretty
  (java-mode-hook
   ("println" . "φ")
   ("printf"  . "ω")
   ("null"    . "Ø")
   ("true"    . "⊨")
   ("false"   . "⊭")
   ("!"       . "¬")
   ("&&"      . "⋀")
   ("||"      . "")
   ("for"     . "∀")
   ("return"  . "⟼"))
  :config
  (with-eval-after-load "cc-mode"
    (c-add-style
     "java"
     '((c-basic-offset . 4)
       (c-comment-only-line-offset 0 . 0)
       (c-offsets-alist
        (inline-open . 0)
        (topmost-intro-cont . +)
        (statement-block-intro . +)
        (knr-argdecl-intro . 5)
        (substatement-open . 0)
        (substatement-label . +)
        (label . +)
        (statement-case-open . +)
        (statement-cont . +)
        (arglist-intro . c-lineup-arglist-intro-after-paren)
        (arglist-close . c-lineup-arglist)
        (brace-list-intro first c-lineup-2nd-brace-entry-in-arglist c-lineup-class-decl-init-+ +)
        (access-label . 0)
        (inher-cont . c-lineup-java-inher)
        (func-decl-cont . c-lineup-java-throws))))
    (add-to-list 'c-default-style '(java-mode . "java")))

  (with-eval-after-load "abbrev"
    (define-abbrev-table 'java-mode-abbrev-table nil)
    (add-hook 'java-mode-hook
              (proc (setq-local local-abbrev-table java-mode-abbrev-table)))))

Haskell

Haskell is a static lazy functional programming language (what a mouthful). It's quite a beautiful language and really learning it will change the way you think about programming.

Here I configure the REPL for Haskell via the haskell-interactive-mode as well.

(use-package haskell-mode
  :hook
  (haskell-mode-hook . haskell-indentation-mode)
  (haskell-mode-hook . interactive-haskell-mode)
  :custom
  (haskell-interactive-prompt "[λ] ")
  (haskell-interactive-prompt-cont "{λ} ")
  (haskell-interactive-popup-errors nil)
  (haskell-stylish-on-save nil)
  (haskell-process-type 'stack-ghci)
  :general
  (leader
    "th" #'+shell/toggle-haskell-repl)
  :display
  ("\\*haskell.**\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (load (concat user-emacs-directory "elisp/haskell-multiedit.el"))
  (+oreo/create-toggle-function
   +shell/toggle-haskell-repl
   "*haskell*"
   haskell-interactive-bring
   nil))

Python

Works well for python. If you have pyls it should be on your path, so just run eglot if you need. But an LSP server is not necessary for a lot of my time in python.

(use-package python
  :defer t
  :straight nil
  :pretty
  (python-mode-hook
   ("None"   . "Ø")
   ("list"   . "")
   ("List"   . "")
   ("str"    . "𝕊")
   ("True"   . "⊨")
   ("False"  . "⊭")
   ("!"      . "¬")
   ("&&"     . "⋀")
   ("||"     . "")
   ("for"    . "∀")
   ("print"  . "φ")
   ("lambda" . "λ")
   ("return" . "⟼")
   ("yield"  . "⟻"))
  :init
  (setq python-indent-offset 4))

Python shell

Setup for python shell, including a toggle option

(use-package python
  :straight nil
  :commands +python/toggle-repl
  :general
  (leader
    "tp" #'+shell/python-toggle-repl)
  :display
  ("\\*Python\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (+oreo/create-toggle-function
   +shell/python-toggle-repl
   "*Python*"
   run-python
   nil))

YAML

YAML is a data language which is useful for config files.

(use-package yaml-mode
  :straight t)

HTML/CSS/JS

Firstly, web mode for consistent colouring of syntax.

(use-package web-mode
  :mode ("\\.html" . web-mode)
  :mode ("\\.js"   . web-mode)
  :mode ("\\.css"  . web-mode)
  :custom
  ((web-mode-code-indent-offset 2)
   (web-mode-markup-indent-offset 2)
   (web-mode-css-indent-offset 2)))

Then emmet for super speed

(use-package emmet-mode
  :hook (web-mode-hook . emmet-mode)
  :general
  (imap
    :keymaps 'emmet-mode-keymap
    "TAB" #'emmet-expand-line
    "M-j" #'emmet-next-edit-point
    "M-k" #'emmet-prev-edit-point))

Typescript

Kinda expressive, interesting.

(use-package typescript-mode
  :defer t
  :init
  (setq typescript-indent-level 2))

Common Lisp

Common Lisp is a dialect of Lisp, the most common one around. Emacs comes with builtin Lisp support of course, but a REPL would be nice.

Enter SLY. Sly is a fork of SLIME and is mandatory for lisp development on Emacs.

(use-package sly
  :straight t
  :init
  (setq inferior-lisp-program "sbcl")
  :display
  ("\\*sly-db"
   (display-buffer-at-bottom)
   (window-height . 0.5))
  ("\\*sly-"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (evil-set-initial-state 'sly-db-mode 'emacs)
  (+oreo/create-toggle-function
   +shell/toggle-sly
   "*sly-mrepl for sbcl*"
   sly-mrepl
   nil)
  :general
  ; general binds
  (nmap
    :keymaps '(lisp-mode-map sly-mrepl-mode-map)
    "gr" #'sly-eval-buffer
    "gd" #'sly-edit-definition
    "gR" #'sly-who-calls)

  (leader
    "tS" #'+shell/toggle-sly)
  (local-leader
    :keymaps '(lisp-mode-map sly-mrepl-mode-map)
    "s" #'+shell/toggle-sly
    "c" #'sly-compile-file
    "a" #'sly-apropos
    "d" #'sly-describe-symbol)
  (local-leader
    :keymaps 'lisp-mode-map
    :infix "e"
    "b" #'sly-eval-buffer
    "e" #'sly-eval-last-expression
    "f" #'sly-eval-defun
    "r" #'sly-eval-region)
  ; sly binds
  (nmap
    :keymaps 'sly-inspector-mode-map
    "q" #'sly-inspector-quit))

Lisp indent function

Add a new lisp indent function which indents newline lists more appropriately.

(use-package lisp-mode
  :straight nil
  :pretty
  (lisp-mode-hook
   ("lambda"  . "λ")
   ("t"       . "⊨")
   ("nil"     . "Ø")
   ("and"     . "⋀")
   ("or"      . "")
   ("defun"   . "ƒ")
   ("for"     . "∀")
   ("mapc"    . "∀")
   ("mapcar"  . "∀"))
  :general
  (:states '(normal motion visual)
   :keymaps '(emacs-lisp-mode-map lisp-mode-map)
   ")" #'sp-next-sexp
   "(" #'sp-previous-sexp)
  :config
  (defun +oreo/lisp-indent-function (indent-point state)
    (let ((normal-indent (current-column))
          (orig-point (point)))
      (goto-char (1+ (elt state 1)))
      (parse-partial-sexp (point) calculate-lisp-indent-last-sexp 0 t)
      (cond
       ;; car of form doesn't seem to be a symbol, or is a keyword
       ((and (elt state 2)
             (or (not (looking-at "\\sw\\|\\s_"))
                 (looking-at ":")))
        (if (not (> (save-excursion (forward-line 1) (point))
                    calculate-lisp-indent-last-sexp))
            (progn (goto-char calculate-lisp-indent-last-sexp)
                   (beginning-of-line)
                   (parse-partial-sexp (point)
                                       calculate-lisp-indent-last-sexp 0 t)))
        ;; Indent under the list or under the first sexp on the same
        ;; line as calculate-lisp-indent-last-sexp.  Note that first
        ;; thing on that line has to be complete sexp since we are
        ;; inside the innermost containing sexp.
        (backward-prefix-chars)
        (current-column))
       ((and (save-excursion
               (goto-char indent-point)
               (skip-syntax-forward " ")
               (not (looking-at ":")))
             (save-excursion
               (goto-char orig-point)
               (looking-at ":")))
        (save-excursion
          (goto-char (+ 2 (elt state 1)))
          (current-column)))
       (t
        (let ((function (buffer-substring (point)
                                          (progn (forward-sexp 1) (point))))
              method)
          (setq method (or (function-get (intern-soft function)
                                         'lisp-indent-function)
                           (get (intern-soft function) 'lisp-indent-hook)))
          (cond ((or (eq method 'defun)
                     (and (null method)
                          (> (length function) 3)
                          (string-match "\\`def" function)))
                 (lisp-indent-defform state indent-point))
                ((integerp method)
                 (lisp-indent-specform method state
                                       indent-point normal-indent))
                (method
                 (funcall method indent-point state))))))))
  (setq-default lisp-indent-function #'+oreo/lisp-indent-function))