Files
dotfiles/Emacs/.config/emacs/config.org
2023-04-25 13:00:25 +01:00

108 KiB
Raw Blame History

Emacs configuration

My configuration for (a very specific form of) Emacs

Basics

Firstly, set full name and mail address. This is used in encryption and mailing.

(setq user-full-name "Aryadev Chavali"
      user-mail-address "aryadev@aryadevchavali.com")

Let's set all yes or no questions to single letter responses.

(fset 'yes-or-no-p 'y-or-n-p)

Set the encoding to UTF-8-Unix by default.

(use-package emacs
  :straight nil
  :init
  (setq-default buffer-file-coding-system 'utf-8-unix
                save-buffer-coding-system 'utf-8-unix))

Setup no-littering, which cleans up many of the default directories in Emacs.

(use-package no-littering
  :demand t
  :init
  (setq no-littering-etc-directory (expand-file-name ".config/"  user-emacs-directory)
        no-littering-var-directory (expand-file-name ".local/" user-emacs-directory)))

File saves and custom file

Setup automatic saving for files (in case of system failure) and auto-revert-mode (which refreshes the buffer on changes to the underlying file). Along with that, set the custom-file (which holds temporary customisation) in the etc folder.

(use-package emacs
  :straight nil
  :init
  (setq backup-directory-alist `(("." . ,(no-littering-expand-var-file-name "saves/")))
        global-auto-revert-non-file-buffers t
        auto-revert-verbose nil)
  (setq custom-file (no-littering-expand-etc-file-name "custom.el"))
  :config
  (global-auto-revert-mode 1))

Custom functionality

Functions that don't require a packages to work other than Emacs, which means I can define them early. These are used much later in the config.

Toggle buffer

Like VSCode's toggling feature for just the terminal but now for any buffer of choice, as long as I can generate it via a command.

(with-eval-after-load "window"
  (defmacro +oreo/create-toggle-function (func-name buf-name
                                                    buf-create
                                                    &optional accept-numeric)
    "Generate a function named FUNC-NAME that toggles the buffer with
name BUF-NAME, using BUF-CREATE to generate it if necessary.

BUF-NAME cannot be a regexp, it must be a fixed name."
    (let ((interactive-arg
           (if accept-numeric '(interactive "p") '(interactive)))
          (arguments
           (if accept-numeric '(&optional arg) nil))
          (buffer-name (if accept-numeric
                           `(if (= arg 1)
                                ,buf-name
                              (concat ,buf-name "<" (int-to-string arg) ">"))
                         buf-name))
          (buffer-create (if accept-numeric
                             `(if (= arg 1)
                                  (,buf-create)
                                (,buf-create arg))
                           `(,buf-create))))
      `(defun ,func-name ,arguments
         ,interactive-arg
         (let* ((buffer (or (get-buffer ,buffer-name)
                            ,buffer-create))
                (displayed (get-buffer-window buffer)))
           (if displayed
               (delete-window displayed)
             (display-buffer buffer)
             (select-window (get-buffer-window buffer))))))))

Auto-run command after-save-hook

Define a macro, which creates hooks into the after-save-hook. On certain conditions being met, to-run is evaluated.

(use-package simple
  :straight nil
  :config
  (defmacro +oreo/create-auto-save (conditions &rest to-run)
    "Create a hook for after saves, where (on CONDITIONS being met)
TO-RUN is evaluated. "
    `(add-hook 'after-save-hook #'(lambda ()
                                    (interactive)
                                    (when ,conditions
                                      ,@to-run)))))

Procedure

A lambda which takes no arguments is a procedure. This macro generates procedures, with the parameters of the macro being the body of the procedure. It returns it in quoted form, as that is the most common use of this macro.

(You may notice proc is used where the return value doesn't matter).

(defmacro proc (&rest CDR)
  "For a given list of forms CDR, return a quoted non-argument
lambda."
  `(quote (lambda () ,@CDR)))

System specificity

A macro that acts as a switch case on (system-name) which allows the writing of system specific code. For me this is for my desktop and laptop, particularly for font sizes. Though there may be an easier solution than this, this seems simple enough.

(defmacro +oreo/sys-name-cond (&rest pairs)
  "Switch case on result of function `system-name'.

Each pair in PAIRS is typed as: (string . (forms...)) where the
string represents the system name to test, and forms being the
consequence if true."
  `(cond
    ,@(mapcar #'(lambda (pair)
      ;; (str . forms..) -> ((string= str (system-name))
      ;; forms...)
      (let ((name (car pair))
      (body (cdr pair)))
        `((string= ,name (system-name)) ,@body)))
  pairs)))

In early-init.el I set the number of native-workers to 4, which isn't necessarily optimal when loading/compiling the rest of this file depending on the machine I use:

  • On my laptop (spiderboy) I'd prefer to have it use 2-3 threads so I can actually use the rest of the laptop while waiting for compilation
  • On my desktop (oldboy) I'd prefer to use 4-6 threads as I can afford more, so I can get a faster load up.
(+oreo/sys-name-cond
 ("spiderboy"
  (setq native-comp-async-jobs-number 3))
 ("oldboy"
  (setq native-comp-async-jobs-number 6)))

Clean buffer list

Instead of cleaning my buffer list manually, selectively preserving some fixed set of buffers, this function does it for me. Preserves any buffers in +oreo/keep-buffer and kills the rest.

(defconst +oreo/keep-buffers
  (list "config.org" "*scratch*"
        "*dashboard*" "*Messages*"
        "*Warnings*")
  "List of buffer names to preserve.")

(defun +oreo/clean-buffer-list ()
  "Kill all buffers except any with names in +oreo/keep-buffers."
  (interactive)
  (mapcar #'(lambda (buf)
              (if (not (member (buffer-name buf) +oreo/keep-buffers))
                  (kill-buffer buf)))
          (buffer-list)))

Aesthetics

General look and feel of Emacs (mostly disabling stuff I don't like).

Themes

Dark theme

My preferred dark theme is my own "personal-primary" theme which is stored in the Emacs lisp folder (look at this file). It tries to use the primary colours for everything, leading to a colour -> meaning relation.

I have an older version of this theme that uses a homogeneous colour scheme (this file)

(use-package custom
  :demand t
  :straight nil
  :init
  (setq custom-theme-directory (concat user-emacs-directory "elisp/"))
  :config
  (load-theme 'personal-primary t))

Light theme

I'm not very good at designing light themes as I don't really use them. However they are necessary in high light situations where a dark mode would strain the eyes too much. So I built a custom theme on top of the default Emacs theme, "personal-light" (look at this file).

I don't use it by default but I may need to switch between light and dark easily, so here's a command to switch between them.

(use-package custom
  :defer t
  :straight nil
  :commands +oreo/switch-theme
  :init
  (defvar +oreo/theme 'dark)
  :config
  (defun +oreo/switch-theme ()
    (interactive)
    (cond
     ((eq +oreo/theme 'dark)
      (load-theme 'personal-light t)
      (setq +oreo/theme 'light))
     ((eq +oreo/theme 'light)
      (load-theme 'personal-primary t)
      (setq +oreo/theme 'dark)))))

Font size

Set font size to 140 if on my desktop (oldboy) or 175 if on my laptop (spiderboy).

(use-package faces
  :straight nil
  :config
  (+oreo/sys-name-cond
   ("spiderboy" (set-face-attribute 'default nil :height 175))
   ("oldboy" (set-face-attribute 'default nil :height 140))))

Scratch buffer

Turn off the startup buffer because I prefer Dashboard, and write into the scratch buffer some nice information about Emacs.

(use-package emacs
  :straight nil
  :init
  (setq inhibit-startup-screen t
        initial-scratch-message (format ";; Emacs v%s\n" emacs-version)
        ring-bell-function 'ignore))

Blinking cursor

Turn off blinking-cursor-mode as hl-line is better.

(use-package frame
  :straight nil
  :config
  (blink-cursor-mode 0))

Fringes

Turning off borders in my window manager was a good idea, so turn off the borders for Emacs.

(use-package fringe
  :after dashboard
  :straight nil
  :config
  (fringe-mode 0))

Mode line

A mode line in an editor can provide a LOT of information, or very little. I customised the Emacs modeline to give me a bit of info, telephone-line to give me a lot.

Currently I use the default mode line with some customisation; simplicity is above all.

Emacs Mode-line

Firstly, declare a variable for the separator between each module

(defconst +modeline/separator " " "Separator between modules.")

Then declare a variable for the number of separators between each module in the modeline.

(defconst +modeline/sep-count 4
  "Number of +modline/separator instances separating modules.")

Then, declare a list of reserved characters for which the previously declared seperator won't be applied when placed at the end of a module string.

(defconst +modeline/reserved-chars (list "[" "(")
  "Characters that, when at the end of a module string, won't
  have the separator applied to them.")

Now declare a function that applies the separator with respect to the reserved characters to any one string.

(defun +modeline/handle-string (STR)
  (condition-case nil
      (progn
        (string-blank-p STR)
        (if (cl-member (car (last (split-string STR "" t))) +modeline/reserved-chars :test #'string=)
            STR
          (concat STR (cl-reduce #'concat (cl-loop for i from 1 to +modeline/sep-count collect +modeline/separator)))))
    (error STR)))

Finally, set the mode-line-format.

(setq-default
 mode-line-format
 (mapcar #'+modeline/handle-string
         (list "%l:%c"
               "%p["
               '(:eval (upcase
                        (substring
                         (format "%s" (if (bound-and-true-p evil-state)
                                          evil-state
                                        ""))
                         0 1)))
               "]"
               "%+%b("
               '(:eval (format "%s" major-mode))
               ")"
               "%I"
               vc-mode
               "        "
               mode-line-misc-info
               mode-line-end-spaces)))

Telephone-line

Telephone-line is a mode-line package for Emacs which prioritises extensibility. It also looks much nicer than the default mode line with colouring and a ton of presentations to choose from.

(use-package telephone-line
  :init
  (defface +telephone/position-face '((t (:foreground "red" :background "grey10"))) "")
  (defface +telephone/mode-face '((t (:foreground "white" :background "dark green"))) "")
  (defface +telephone/file-info-face '((t (:foreground "white" :background "Dark Blue"))) "")
  :custom
  (telephone-line-faces
   '((evil      . telephone-line-modal-face)
     (modal     . telephone-line-modal-face)
     (ryo       . telephone-line-ryo-modal-face)
     (accent    . (telephone-line-accent-active . telephone-line-accent-inactive))
     (nil         . (mode-line                    . mode-line-inactive))
     (position  . (+telephone/position-face     . mode-line-inactive))
     (mode      . (+telephone/mode-face         . mode-line-inactive))
     (file-info . (+telephone/file-info-face    . mode-line-inactive))))
  (telephone-line-primary-left-separator    'telephone-line-halfcos-left)
  (telephone-line-secondary-left-separator  'telephone-line-halfcos-hollow-left)
  (telephone-line-primary-right-separator   'telephone-line-identity-right)
  (telephone-line-secondary-right-separator 'telephone-line-identity-hollow-right)
  (telephone-line-height 24)
  (telephone-line-evil-use-short-tag nil)
  :config
  (telephone-line-defsegment +telephone/buffer-or-filename ()
                             (cond
                              ((buffer-file-name)
                               (if (and (fboundp 'projectile-project-name)
                                        (fboundp 'projectile-project-p)
                                        (projectile-project-p))
                                   (list ""
                                         (funcall (telephone-line-projectile-segment) face)
                                         (propertize
                                          (concat "/"
                                                  (file-relative-name (file-truename (buffer-file-name))
                                                                      (projectile-project-root)))
                                          'help-echo (buffer-file-name)))
                                 (buffer-file-name)))
                              (t (buffer-name))))

  (telephone-line-defsegment +telephone/get-position ()
                             `(,(concat "%lL:%cC"
                                        (if (not mark-active)
                                            ""
                                          (format " | %dc" (- (+ 1 (region-end)) (region-beginning)))))))

  (setq-default
   telephone-line-lhs '((mode telephone-line-major-mode-segment)
                        (file-info telephone-line-input-info-segment)
                        (position +telephone/get-position)
                        (accent   +telephone/buffer-or-filename
                                  telephone-line-process-segment))
   telephone-line-rhs '((accent telephone-line-flycheck-segment telephone-line-misc-info-segment
                                telephone-line-projectile-segment)
                        (file-info telephone-line-filesize-segment)
                        (evil  telephone-line-evil-tag-segment)))
  (telephone-line-mode))

Core packages

Packages that are absolutely necessary for the rest of the configuration. These yield core functionality such as keybinding, modal editing, completion, auto typing to name a few.

General

General provides a great solution for binding keys. It has evil and use-package support so it fits nicely into configuration. In this case, I define a "definer" for the "LEADER" keys. Leader is bound to SPC and it's functionally equivalent to the doom/spacemacs leader. Local leader is bound to SPC , and it's similar to doom/spacemacs leader but doesn't try to fully assimilate the local-leader map, instead just picking stuff I think is useful. This forces me to learn only as many bindings as I find necessary; no more, no less.

I also define prefix leaders for differing applications. These are quite self explanatory by their name and provide a nice way to visualise all bindings under a specific heading just by searching the code.

(use-package general
  :demand t
  :config
  ;; General which key definitions for leaders
  (general-def
    :states '(normal motion)
    "SPC"   'nil
    "\\"    '(nil :which-key "Local leader")
    "SPC c" '(nil :which-key "Code")
    "SPC f" '(nil :which-key "File")
    "SPC t" '(nil :which-key "Shell")
    "SPC m" '(nil :which-key "Toggle modes")
    "SPC a" '(nil :which-key "Applications")
    "SPC s" '(nil :which-key "Search")
    "SPC b" '(nil :which-key "Buffers")
    "SPC q" '(nil :which-key "Quit/Literate")
    "SPC i" '(nil :which-key "Insert")
    "SPC d" '(nil :which-key "Directories"))

  (general-create-definer leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC")

  (general-create-definer local-leader
    :states '(normal motion)
    :prefix "\\")

  (general-create-definer code-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC c")

  (general-create-definer file-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC f")

  (general-create-definer shell-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC t")

  (general-create-definer mode-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC m")

  (general-create-definer app-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC a")

  (general-create-definer search-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC s")

  (general-create-definer buffer-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC b")

  (general-create-definer quit-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC q")

  (general-create-definer insert-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC i")

  (general-create-definer dir-leader
    :states '(normal motion)
    :keymaps 'override
    :prefix "SPC d")

  (general-create-definer general-nmmap
    :states '(normal motion))

  (defalias 'nmmap #'general-nmmap)

  (general-evil-setup t))

Some binds in Emacs

Some bindings that I couldn't fit elsewhere easily.

  (use-package emacs
    :straight nil
    :general
    (general-def
      "C-x d" #'delete-frame)

    (nmmap
      "C--" #'text-scale-decrease
      "C-=" #'text-scale-increase)

    (leader
      "SPC" '(execute-extended-command :which-key "M-x")
      "'"   '(browse-url-emacs :which-key "Open url in Emacs")
      "u"   'universal-argument
      ";"   'eval-expression
      ":"   `(,(proc (interactive) (switch-to-buffer "*scratch*"))
	      :which-key "Switch to *scratch*")
      "!"   '(async-shell-command :which-key "Async shell command")
      "h" '(help-command :which-key "Help"))

    (mode-leader
     "t" #'+oreo/switch-theme)

    (code-leader
      "F" (list (proc (interactive) (find-file "~/Code/")) ':which-key "Open ~/Code/"))

    (file-leader
      "f" #'find-file
      "F" #'find-file-other-frame
      "s" #'save-buffer
      "p" (list (proc (interactive) (find-file (concat user-emacs-directory "config.org")))
		':which-key "Open config.org"))

    (quit-leader
      "q" #'save-buffers-kill-terminal
      "c" #'+literate/compile-config
      "l" #'+literate/load-config
      "d" #'delete-frame)

    (search-leader "i" #'imenu))

Evil

My editor journey started off with Vim rather than Emacs, so my brain has imprinted on its style. Thankfully Emacs is super extensible so there exists a package (more of a supreme system) for porting Vim's modal editing style to Emacs, called Evil (Emacs Vi Layer).

However there are a lot of packages in Vim that provide greater functionality, for example 'vim-surround'. Emacs, by default, has these capabilities but there are further packages which integrate them into Evil.

Evil core

Setup the evil package, with some opinionated keybindings:

  • Switch evil-upcase and evil-downcase because I use evil-upcase more
  • Switch evil-goto-mark and evil-goto-mark-line as I'd rather have the global one closer to the home row
  • Use 'T' character as an action for transposing objects
(use-package evil
  :demand t
  :hook (after-init-hook . evil-mode)
  :general
  (leader
    "w"  '(evil-window-map :which-key "Window")
    "wd" #'delete-frame)

  (nmmap
    "TAB" #'evil-jump-item
    "r"   #'evil-replace-state
    "zC"  #'hs-hide-level
    "'"   #'evil-goto-mark
    "`"   #'evil-goto-mark-line
    "C-w" #'evil-window-map
    "gu"  #'evil-upcase
    "gU"  #'evil-downcase
    "T"   nil)

  (nmmap
    :infix "T"
    "w" #'transpose-words
    "c" #'transpose-chars
    "s" #'transpose-sentences
    "p" #'transpose-paragraphs
    "e" #'transpose-sexps
    "l" #'transpose-lines)
  :init
  (setq evil-want-keybinding nil
        evil-split-window-below t
        evil-vsplit-window-right t
        evil-want-abbrev-expand-on-insert-exit t
        evil-undo-system #'undo-tree)
  :config
  (fset #'evil-window-vsplit #'make-frame))

Evil surround

Evil surround is a port for vim-surround.

(use-package evil-surround
  :after evil
  :config
  (global-evil-surround-mode))

Evil commentary

Allows generalised commenting of objects easily.

(use-package evil-commentary
  :after evil
  :config
  (evil-commentary-mode))

Evil multi cursor

Setup for multi cursors in Evil mode. Don't let evil-mc setup it's own keymap because it uses 'gr' as its prefix, which I don't like.

(use-package evil-mc
  :after evil
  :init
  (defvar evil-mc-key-map (make-sparse-keymap))
  :general
  (nmap
    :infix "gz"
    "q" #'evil-mc-undo-all-cursors
    "d" #'evil-mc-make-and-goto-next-match
    "j" #'evil-mc-make-cursor-move-next-line
    "k" #'evil-mc-make-cursor-move-prev-line
    "j" #'evil-mc-make-cursor-move-next-line
    "m" #'evil-mc-make-all-cursors
    "z" #'evil-mc-make-cursor-here
    "r" #'evil-mc-resume-cursors
    "s" #'evil-mc-pause-cursors
    "u" #'evil-mc-undo-last-added-cursor)
  :config
  ;; (evil-mc-define-vars)
  ;; (evil-mc-initialize-vars)
  ;; (add-hook 'evil-mc-before-cursors-created #'evil-mc-pause-incompatible-modes)
  ;; (add-hook 'evil-mc-before-cursors-created #'evil-mc-initialize-active-state)
  ;; (add-hook 'evil-mc-after-cursors-deleted  #'evil-mc-teardown-active-state)
  ;; (add-hook 'evil-mc-after-cursors-deleted  #'evil-mc-resume-incompatible-modes)
  ;; (advice-add #'evil-mc-initialize-hooks :override #'ignore)
  ;; (advice-add #'evil-mc-teardown-hooks :override #'evil-mc-initialize-vars)
  ;; (advice-add #'evil-mc-initialize-active-state :before #'turn-on-evil-mc-mode)
  ;; (advice-add #'evil-mc-teardown-active-state :after #'turn-off-evil-mc-mode)
  ;; (add-hook 'evil-insert-state-entry-hook #'evil-mc-resume-cursors)
  (global-evil-mc-mode))

Evil collection

Provides a community based set of keybindings for most modes in Emacs. I don't necessarily like all my modes having these bindings though, as I may disagree with some. So I use it in a mode to mode basis.

(use-package evil-collection
  :after evil)

Completion

Emacs is a text based interface. Completion is its bread and butter in providing good user experience. By default Emacs provides 'completions-list' which produces a buffer of options which can be searched and selected. We can take this further though!

Ido and Icomplete are packages distributed with Emacs to provide greater completion interfaces. They utilise the minibuffer to create a more interactive experience, allowing incremental searches and option selection.

Ivy and Helm provide more modern interfaces, though Helm is quite heavy. Ivy, on the other hand, provides an interface similar to Ido with less clutter and better customisation options.

Ivy

Ivy is a completion framework for Emacs, and my preferred one. It has a great set of features with little to no pain with setting up.

Ivy Core

Setup for ivy, in preparation for counsel. Turn on ivy-mode just after init.

Setup vim-like bindings for the minibuffer ("M-(j|k)" for down|up the selection list).

(use-package ivy
  :defer t
  :hook (after-init-hook . ivy-mode)
  :general
  (general-def
    :keymaps  'ivy-minibuffer-map
    "C-j"     #'ivy-yank-symbol
    "M-j"     #'ivy-next-line-or-history
    "M-k"     #'ivy-previous-line-or-history
    "C-c C-e" #'ivy-occur)
  (general-def
    :keymaps  'ivy-switch-buffer-map
    "M-j"     #'ivy-next-line-or-history
    "M-k"     #'ivy-previous-line-or-history)
  :config
  (require 'counsel nil t)
  (setq ivy-height 10
        ivy-wrap t
        ivy-fixed-height-minibuffer t
        ivy-use-virtual-buffers nil
        ivy-virtual-abbreviate 'full
        ivy-on-del-error-function #'ignore
        ivy-use-selectable-prompt t)
  (with-eval-after-load "amx"
    (setq amx-backend 'ivy)))
Counsel

Setup for counsel. Load after ivy and helpful.

(use-package counsel
  :after ivy
  :general
  (search-leader
    "s" #'counsel-grep-or-swiper
    "r" #'counsel-rg)
  (file-leader
    "r" #'counsel-recentf)
  (insert-leader
    "c" #'counsel-unicode-char)
  (general-def
    [remap describe-bindings]        #'counsel-descbinds
    [remap load-theme]               #'counsel-load-theme)
  :config
  (setq ivy-initial-inputs-alist '((org-insert-link . "^"))
        counsel-describe-function-function #'helpful-callable
        counsel-describe-variable-function #'helpful-variable
        counsel-grep-swiper-limit 1500000
        ivy-re-builders-alist '((swiper . ivy--regex-plus)
                                (counsel-grep-or-swiper . ivy--regex-plus)
                                (counsel-rg . ivy--regex-plus)
                                (t . ivy--regex-ignore-order)))
  (counsel-mode))
Ivy posframe

This makes ivy minibuffer windows use child frames. Very nice eyecandy.

(use-package ivy-posframe
  :hook (ivy-mode-hook . ivy-posframe-mode)
  :straight t
  :init
  (setq ivy-posframe-parameters
        '((left-fringe      . 0)
          (right-fringe     . 0)
          (background-color . "grey7")))

  (setq ivy-posframe-display-functions-alist
        '((t . ivy-posframe-display-at-window-center))))
Counsel etags

Counsel etags allows me to search generated tag files for tags. I already have a function defined to generate the tags, so it's just searching them which I find to be a bit of a hassle, and where this package comes in.

This has been replaced by xref which is inbuilt.

(use-package counsel-etags
  :after counsel
  :general
  (search-leader
    "t" #'counsel-etags-find-tag))

Ido

Ido is a very old completion package that still works great to this day. Though it is limited in its scope (and may thus be called a completion add-on rather than a full on framework), it is still a very powerful package. With the use of ido-completing-read+, it may be used similarly to a fully fledged completion framework.

(use-package ido
  :demand t
  :general
  (general-def
    :keymaps '(ido-buffer-completion-map
               ido-file-completion-map
               ido-file-dir-completion-map
               ido-common-completion-map)
    (kbd "M-j")   #'ido-next-match
    (kbd "M-k")   #'ido-prev-match
    (kbd "C-x o") #'evil-window-up)
  :init
  (setq ido-decorations
        (list "{" "}" " \n" " ..." "[" "]" " [No match]" " [Matched]"
              " [Not readable]" " [Too big]" " [Confirm]")
        completion-styles '(flex partial-completion intials emacs22))
  (setq-default ido-enable-flex-matching t
                ido-enable-dot-prefix t
                ido-enable-regexp nil)
  (with-eval-after-load "magit"
    (setq magit-completing-read-function 'magit-ido-completing-read))
  :config
  (ido-mode)
  (ido-everywhere))
Ido ubiquitous

Ido completing-read+ is a package that extends the ido package to work with more text based functions.

(use-package ido-completing-read+
  :after ido
  :config
  (ido-ubiquitous-mode +1))

Amx

Amx is a fork of Smex that works to enhance the execute-extended-command interface. It also provides support for ido or ivy (though I'm likely to use ido here) and allows you to switch between them.

It provides a lot of niceties such as presenting the key bind when looking for a command.

(use-package amx
  :config
  (amx-mode))

Orderless

Orderless sorting method for completion, probably one of the best things ever.

(use-package orderless
  :after (ivy ido)
  :config
  (setf (alist-get t ivy-re-builders-alist) 'orderless-ivy-re-builder))

Completions-list

In case I ever use the completions list, some basic commands to look around.

(use-package simple
  :straight nil
  :general
  (nmmap
    :keymaps 'completion-list-mode-map
    "l"   #'next-completion
    "h"   #'previous-completion
    "ESC" #'delete-completion-window
    "q"   #'quit-window
    "RET" #'choose-completion)
  :config
  (with-eval-after-load "evil"
    (setq evil-emacs-state-modes (cl-remove-if
                                  #'(lambda (x) (eq 'completions-list-mode x))
                                  evil-emacs-state-modes))
    (add-to-list 'evil-normal-state-modes 'completions-list-mode)))

Company

Company is the auto complete system I use. I don't like having heavy setups for company as it only makes it slower to use. In this case, just setup some evil binds for company.

(use-package company
  :straight t
  :hook
  (prog-mode-hook   . company-mode)
  (eshell-mode-hook . company-mode)
  :general
  (imap
    "C-SPC" #'company-complete)
  (general-def
    :states '(normal insert)
    "M-j" #'company-select-next
    "M-k" #'company-select-previous))

Pretty symbols

Prettify symbols mode allows for users to declare 'symbols' that replace text within certain modes. Though this may seem like useless eye candy, it has aided my comprehension and speed of recognition (recognising symbols is easier than words).

Essentially a use-package keyword which makes declaring pretty symbols for language modes incredibly easy. Checkout my C/C++ configuration for an example.

(use-package prog-mode
  :straight nil
  :init
  (setq prettify-symbols-unprettify-at-point t)
  :config
  (with-eval-after-load "use-package-core"
    (add-to-list 'use-package-keywords ':pretty)
    (defun use-package-normalize/:pretty (_name-symbol _keyword args)
      args)

    (defun use-package-handler/:pretty (name _keyword args rest state)
      (use-package-concat
       (use-package-process-keywords name rest state)
       (let ((arg args)
             (forms nil))
         (while arg
           (let ((mode (caar arg))
                 (rest (cdr (car arg))))
             (add-to-list
              'forms
              `(add-hook
                ',mode
                (lambda nil
                  (setq prettify-symbols-alist ',rest)
                  (prettify-symbols-mode)))))
           (setq arg (cdr arg)))
         forms)))))

Here's a collection of keywords and their associated symbols, for a pseudo language.

("null"   . "Ø")
("list"   . "")
("string" . "𝕊")
("true"   . "")
("false"  . "⊥")
("char"   . "")
("int"    . "")
("float"  . "")
("!"      . "¬")
("&&"     . "∧")
("||"      . "")
("for"    . "∀")
("return" . "⟼")
("print"  . "")
("lambda" . "λ")

Window management

Emacs' default window management is quite bad, eating other windows and not particularly caring for the current window setup. Thankfully you can change this via the display-buffer-alist which matches buffer names with how the window for the buffer should be displayed. I add a use-package keyword to make display-buffer-alist records within use-package.

(use-package window
  :straight nil
  :general
  (buffer-leader
    "b" #'switch-to-buffer
    "d" #'kill-current-buffer
    "K" #'kill-buffer
    "j" #'next-buffer
    "k" #'previous-buffer
    "D" '(+oreo/clean-buffer-list :which-key "Kill most buffers"))
  :init
  (with-eval-after-load "use-package-core"
    (add-to-list 'use-package-keywords ':display)
    (defun use-package-normalize/:display (_name-symbol _keyword args)
      args)

    (defun use-package-handler/:display (name _keyword args rest state)
      (use-package-concat
       (use-package-process-keywords name rest state)
       (let ((arg args)
             forms)
         (while arg
           (add-to-list 'forms
                        `(add-to-list 'display-buffer-alist
                                      ',(car arg)))
           (setq arg (cdr arg)))
         forms)))))

Some display records

Using the :display keyword, setup up some display-buffer-alist records. This is mostly for packages that aren't really configured (like woman) or packages that were configured before (like Ivy).

(use-package window
  :straight nil
  :defer t
  :display
  ("\\*\\(Wo\\)?Man.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))

  ("\\*Process List\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))

  ("\\*\\(Ido \\)?Completions\\*"
   (display-buffer-in-side-window)
   (window-height . 0.25)
   (side . bottom))

  ("\\*ivy-occur.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))

  ("\\*Async Shell Command\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25)))

Auto typing

Snippets are a pretty nice way of automatically inserting code. Emacs provides a ton of packages by default to do this, but there are great packages to install as well.

Abbrevs and skeletons make up a popular solution within Emacs default. Abbrevs are for simple expressions wherein the only input is the key, and the output is some Elisp function. They provide a lot of inbuilt functionality and are quite useful. Skeletons, on the other hand, are for higher level insertions

The popular external solution is Yasnippet. Yasnippet is a great package for snippets, which I use heavily in programming and org-mode. I setup here the global mode for yasnippet and a collection of snippets for ease of use.

Abbrevs

Just define a few abbrevs for various date-time operations. Also define a macro that will assume a function for the expansion, helping with abstracting a few things away.

(use-package abbrev
  :straight nil
  :hook
  (prog-mode-hook . abbrev-mode)
  (text-mode-hook . abbrev-mode)
  :init
  (defmacro +abbrev/define-abbrevs (abbrev-table &rest abbrevs)
    `(progn
       ,@(mapcar #'(lambda (abbrev)
                     `(define-abbrev
                        ,abbrev-table
                        ,(car abbrev)
                        ""
                        (proc (insert ,(cadr abbrev)))))
                 abbrevs)))
  (setq save-abbrevs nil)
  :config
  (+abbrev/define-abbrevs
   global-abbrev-table
   ("sdate"
    (format-time-string "%Y-%m-%d" (current-time)))
   ("stime"
    (format-time-string "%H:%M:%S" (current-time)))
   ("sday"
    (format-time-string "%A" (current-time)))
   ("smon"
    (format-time-string "%B" (current-time)))))

Skeletons

Defining some basic skeletons and a macro to help generate an abbrev as well.

(use-package skeleton
  :straight nil
  :after abbrev
  :config
  (defmacro +autotyping/gen-skeleton-abbrev (mode abbrev &rest skeleton)
    (let* ((table          (intern (concat (symbol-name mode) "-abbrev-table")))
           (skeleton-name  (intern (concat "+skeleton/" (symbol-name mode) "/" abbrev))))
      `(progn
         (define-skeleton
           ,skeleton-name
           ""
           ,@skeleton)
         (define-abbrev ,table
           ,abbrev
           ""
           ',skeleton-name)))))

Auto insert

Allows inserting text on creating of a new buffer with a given name. Supports skeletons for inserting text. Here I define an HTML skeleton and a Makefile skeleton.

(use-package autoinsert
  :straight nil
  :hook (after-init-hook . auto-insert-mode)
  :config
  (add-to-list
   'auto-insert-alist
   '(("\\.html\\'" . "HTML Skeleton")
     ""
     "<!doctype html>
<html class='no-js' lang=''>
  <head>
    <meta charset='utf-8'>
    <meta http-equiv='x-ua-compatible' content='ie=edge'>
    <title>"(read-string "Enter title: ") | """</title>
    <meta name='description' content='" (read-string "Enter description: ") | "" "'>
    <meta name='author' content='"user-full-name"'/>
    <meta name='viewport' content='width=device-width, initial-scale=1'>

    <link rel='apple-touch-icon' href='/apple-touch-icon.png'>
    <link rel='shortcut icon' href='/favicon.ico'/>
    <!-- Place favicon.ico in the root directory -->

  </head>
  <body>
    <!--[if lt IE 8]>
      <p class='browserupgrade'>
      You are using an <strong>outdated</strong> browser. Please
      <a href='http://browsehappy.com/'>upgrade your browser</a> to improve
      your experience.
      </p>
    <![endif]-->
"
     _
     "     </body>
</html>"))
  (add-to-list
   'auto-insert-alist
   '(("Makefile" . "Makefile skeleton")
     ""
     "CC=g++
CFLAGS=-Wall -ggdb
OBJECTS=main.o
OUT=main
ARGS=

%.o: %.cpp
  $(CC) $(CFLAGS) -c $^ -o $@

$(OUT): $(OBJECTS)
  $(CC) $(CFLAGS) $^ -o $@

.PHONY:
clean:
  rm -rfv $(OUT) $(OBJECTS)

.PHONY: run
run: $(OUT)
  ./$^ $(ARGS)

.PHONY: memcheck
memcheck: $(OUT)
  sh /etc/profile.d/debuginfod.sh && valgrind --leak-check=full -s --tool=memcheck ./$^ $(ARGS)"
     _)))

Yasnippet default

Look at the snippets folder for all snippets I've got.

(use-package yasnippet
  :after evil
  :hook
  (prog-mode-hook . yas-minor-mode)
  (text-mode-hook . yas-minor-mode)
  :general
  (insert-leader
    "i" #'yas-insert-snippet)
  :config
  (yas-load-directory (no-littering-expand-etc-file-name "yasnippet/snippets")))

Small packages

ISearch

ISearch is the default incremental search application in Emacs. I use evil-search-forward so I don't interact with isearch that much, but I may need it occasionally.

(use-package isearch
  :straight nil
  :general
  (:keymaps 'isearch-mode-map
   "M-s" #'isearch-repeat-forward))

Info

Info is GNU's attempt at better man pages. Most Emacs packages have info pages so I'd like nice navigation options.

(use-package info
  :straight nil
  :general
  (nmmap
    :keymaps 'Info-mode-map
    "h" #'evil-backward-char
    "k" #'evil-previous-line
    "l" #'evil-forward-char
    "H" #'Info-history-back
    "L" #'Info-history-forward))

Display line numbers

I don't really like line numbers, I find them similar to fringes as useless space, but at least it provides some information. Sometimes it can help with doing repeated commands so a toggle option is necessary.

(use-package display-line-numbers
  :straight nil
  :commands display-line-numbers-mode
  :general
  (mode-leader
    "l" #'display-line-numbers-mode)
  :init
  (setq-default display-line-numbers-type 'relative))

esup

I used to be able to just use profile-dotemacs.el, when my Emacs config was smaller, but now it tells me very little information about where my setup is inefficient due to the literate config. Just found this esup thing and it works perfectly, exactly how I would prefer getting this kind of information. It runs an external Emacs instance and collects information from it, so it doesn't require restarting Emacs to profile.

(use-package esup
  :defer t)

xref

Find definitions, references and general objects using tags without external packages. Provided by default in Emacs and just requires a way of generating a TAGS file for your project. Helps with minimal setups for programming without heavier packages like Eglot.

Projectile provides a nice way to generate tags.

(use-package xref
  :straight nil
  :display
  ("\\*xref\\*"
   (display-buffer-at-bottom)
   (inhibit-duplicate-buffer . t)
   (window-height . 0.25))
  :general
  (code-leader
    "t" '(nil :which-key "Tags"))
  (code-leader
    :infix "t"
    "t" #'xref-find-apropos
    "d" #'xref-find-definitions
    "r" #'xref-find-references)
  (nmmap
    :keymaps 'xref--xref-buffer-mode-map
    "RET" #'xref-goto-xref
    "J" #'xref-next-line
    "K" #'xref-prev-line
    "g" #'xref-revert-buffer
    "q" #'quit-window))

Hl-line

Highlights the current line, much better than a blinking cursor.

(use-package hl-line
  :straight t
  :hook (text-mode-hook . hl-line-mode)
  :hook (prog-mode-hook . hl-line-mode))

Recentf

Recentf provides a method of keeping track of recently opened files.

(use-package recentf
  :straight nil
  :hook (emacs-startup-hook . recentf-mode))

Projectile

Projectile is a project management package which integrates with Emacs very well. It essentially provides alternative Emacs commands scoped to the current 'project', based on differing signs that a directory is a 'project'.

(use-package projectile
  :after evil
  :hook (emacs-startup-hook . projectile-mode)
  :general
  (leader "p" '(projectile-command-map :which-key "Projectile"))
  :init
  (setq projectile-tags-command "ctags -Re -f \"%s\" %s \"%s\""))

Counsel projectile

Counsel integration for projectile commands, very nice.

(use-package counsel-projectile
  :after (projectile counsel)
  :config
  (counsel-projectile-mode +1))

Avy

Setup avy with leader. As I use avy-goto-char-timer a lot, use the C-s bind which replaces isearch. Switch isearch to M-s in case I need to use it.

(use-package avy
  :after evil
  :general
  (nmmap
    "C-s" #'avy-goto-char-timer
    "M-s" #'isearch-forward)
  (search-leader
    "l" #'avy-goto-line))

Ace window

Though evil provides a great many features in terms of window management, ace window can provide some nicer chords for higher management of windows (closing, switching, etc).

(use-package ace-window
  :after evil
  :custom
  (aw-keys '(?a ?s ?d ?f ?g ?h ?j ?k ?l))
  :general
  (nmmap
    [remap evil-window-next] #'ace-window))

Helpful

Helpful provides a modernised interface for some common help commands. I replace describe-function, describe-variable and describe-key by their helpful counterparts.

(use-package helpful
  :after ivy
  :commands (helpful-callable helpful-variable)
  :general
  (general-def
    [remap describe-function] #'helpful-callable
    [remap describe-variable] #'helpful-variable
    [remap describe-key]      #'helpful-key)
  :display
  ("\\*[Hh]elp.*"
   (display-buffer-at-bottom)
   (inhibit-duplicate-buffer . t)
   (window-height . 0.25))
  :config
  (evil-define-key 'normal helpful-mode-map "q" #'quit-window))

Which-key

Which key uses the minibuffer when performing a keybind to provide possible options for the next key.

(use-package which-key
  :config
  (which-key-mode))

Keychord

Keychord is only really here for this one chord I wish to define: "jk" for exiting insert state.

(use-package key-chord
  :after evil
  :config
  (key-chord-define evil-insert-state-map "jk" #'evil-normal-state)
  (key-chord-mode))

(Rip)grep

Grep is a great piece of software, a necessary tool in any Linux user's inventory. By default Emacs has a family of functions to use grep, presenting results in a compilation style. grep searches files, rgrep searches in a directory using the find program and zgrep searches archives. This is a great solution for a general computer environment; essentially all Linux installs will have grep and find installed.

Ripgrep is a Rust program that attempts to perform better than grep, and it actually does. This is because of a set of optimisations, such as checking the .gitignore to exclude certain files from being searched. The ripgrep package provides utilities to ripgrep projects and files for strings. Though ivy comes with counsel-rg, it uses Ivy's completion framework rather than the compilation style buffers, which sometimes proves very useful.

Of course, this requires installing the rg binary which is available in most repositories nowadays.

Grep

I have no use for standard 'grep'; counsel-swiper does the same thing faster and within Emacs lisp. rgrep is useful though.

(use-package grep
  :display
  ("grep\\*"
   (display-buffer-reuse-window)
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :straight nil
  :general
  (search-leader
    "d" #'rgrep))

rg

(use-package rg
  :after grep
  :general
  (search-leader
    "R" #'rg)
  (:keymaps 'rg-mode-map
   "]]" #'rg-next-file
   "[[" #'rg-prev-file
   "q"  #'quit-window)
  :init
  (setq rg-group-result t
        rg-hide-command t
        rg-show-columns nil
        rg-show-header t
        rg-custom-type-aliases nil
        rg-default-alias-fallback "all"
        rg-buffer-name "*ripgrep*"))

Olivetti

Olivetti provides a focus mode for Emacs, which makes it look a bit nicer with fringes. I also define +olivetti-mode which will remember and clear up any window configurations on the frame, then when turned off will reinsert them - provides a nice way to quickly focus on a buffer.

(use-package olivetti
  :commands (+olivetti-mode)
  :general
  (mode-leader
    "o" #'+olivetti-mode)
  :init
  (setq-default olivetti-body-width 0.6)
  (setq olivetti-style nil)
  (add-hook 'olivetti-mode-on-hook  (proc (interactive) (text-scale-increase 1)))
  (add-hook 'olivetti-mode-off-hook (proc (interactive) (text-scale-decrease 1)))
  :config
  (defun +olivetti-mode ()
    (interactive)
    (if (not olivetti-mode)
        (progn
          (window-configuration-to-register 1)
          (delete-other-windows)
          (olivetti-mode t))
      (jump-to-register 1)
      (olivetti-mode 0))))

All the Icons

Nice set of icons with a great user interface to manage them.

(use-package all-the-icons
  :straight t
  :defer t
  :commands (all-the-icons-insert)
  :general
  (insert-leader
    "e" #'all-the-icons-insert))

Hide mode line

Custom minor mode to toggle the mode line. Check it out at elisp/hide-mode-line.el.

(use-package hide-mode-line
  :straight nil
  :load-path "elisp/"
  :defer t
  :general
  (mode-leader
    "m" #'hide-mode-line-mode))

Save place

Saves current place in a buffer permanently, so on revisiting the file (even in a different Emacs instance) you go back to the place you were at last.

(use-package saveplace
  :straight nil
  :config
  (save-place-mode))

Applications

Applications are greater than packages; they provide a set of functionality to create an interface in Emacs. Emacs comes with applications and others may be installed.

Dashboard

Dashboard creates a custom dashboard for Emacs that replaces the initial startup screen in default Emacs. It has a lot of customising options.

(use-package dashboard
  :straight t
  :demand t
  :general
  (app-leader
    "b" #'dashboard-refresh-buffer)
  (:states '(normal motion emacs)
   :keymaps 'dashboard-mode-map
   "q" (proc (interactive) (kill-this-buffer)))
  (nmmap
    :keymaps 'dashboard-mode-map
    "r" #'dashboard-jump-to-recent-files
    "p" #'dashboard-jump-to-projects
    "}" #'dashboard-next-section
    "{" #'dashboard-previous-section)
  :init
  (setq initial-buffer-choice nil
        dashboard-banner-logo-title "Oreomacs"
        dashboard-center-content t
        dashboard-set-init-info t
        dashboard-startup-banner (no-littering-expand-etc-file-name "dashboard/logo.png")
        dashboard-set-footer t
        dashboard-set-navigator t
        dashboard-items '((projects . 5)
                          (recents . 5))
        dashboard-footer-messages (list
                                   "Collecting parentheses..."
                                   "Linking 'coffee_machine.o'..."
                                   "Uploading ip to hacker named 4chan..."
                                   "Dividing by zero..."
                                   "Solving 3-sat..."
                                   "Obtaining your health record..."
                                   (format "Recompiling Emacs for the %dth time..." (random 1000))
                                   "Escaping the cycle of samsara..."))
  :config
  (dashboard-setup-startup-hook))

EWW

Emacs Web Wowser is the inbuilt text based web browser for Emacs. It can render images and basic CSS styles but doesn't have a JavaScript engine, which makes sense as it's primarily a text interface.

(use-package eww
  :defer t
  :general
  (app-leader
    "w" #'eww)
  :straight nil
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-eww-setup)))

Calendar

Calendar is a simple inbuilt application that helps with date functionalities. I add functionality to copy dates from the calendar to the kill ring and bind it to "Y".

(use-package calendar
  :straight nil
  :defer t
  :commands (+calendar/copy-date +calendar/toggle-calendar)
  :display
  ("\\*Calendar\\*"
   (display-buffer-at-bottom)
   (inhibit-duplicate-buffer . t)
   (window-height . 0.17))
  :general
  (nmmap
    :keymaps 'calendar-mode-map
    "Y" #'+calendar/copy-date)
  (app-leader
    "d" #'+calendar/toggle-calendar)
  :config
  (defun +calendar/copy-date ()
    "Copy date under cursor into kill ring."
    (interactive)
    (if (use-region-p)
        (call-interactively #'kill-ring-save)
      (let ((date (calendar-cursor-to-date)))
        (when date
          (setq date (encode-time 0 0 0 (nth 1 date) (nth 0 date) (nth 2 date)))
          (kill-new (format-time-string "%Y-%m-%d" date))))))
  (+oreo/create-toggle-function
   +calendar/toggle-calendar
   "*Calendar*"
   calendar
   nil))

Mail

Mail is a funny thing; most people use it just for business or advertising and it's come out of use in terms of personal communication in the west for the most part (largely due to "social" media applications). However, this isn't true for the open source and free software movement who heavily use mail for communication.

Integrating mail into Emacs helps as I can send source code and integrate it into my workflow just a bit better.

Notmuch

(use-package notmuch
  :defer t
  :commands (notmuch +mail/flag-thread)
  :general
  (app-leader "m" #'notmuch)
  (nmap
    :keymaps 'notmuch-search-mode-map
    "f" #'+mail/flag-thread)
  :init
  (defconst +mail/signature "---------------\nAryadev Chavali")
  (defconst +mail/local-dir (concat user-emacs-directory ".mail/"))
  (setq notmuch-show-logo nil
        notmuch-search-oldest-first nil
        notmuch-hello-sections '(notmuch-hello-insert-saved-searches
                                 notmuch-hello-insert-alltags
                                 notmuch-hello-insert-recent-searches)
        notmuch-archive-tags '("-inbox" "-unread" "+archive")
        mail-signature +mail/signature
        mail-default-directory +mail/local-dir
        mail-source-directory +mail/local-dir
        message-signature +mail/signature
        message-auto-save-directory +mail/local-dir
        message-directory +mail/local-dir)

  (defun +mail/sync-mail ()
    "Sync mail via mbsync."
    (interactive)
    (start-process-shell-command "" nil "mbsync -a"))
  (defun +mail/trash-junk ()
    "Delete any mail in junk"
    (interactive)
    (start-process-shell-command "" nil "notmuch search --output=files --format=text0 tag:deleted tag:spam tag:trash tag:junk | xargs -r0 rm"))
  :config
  (defun +mail/flag-thread (&optional unflag beg end)
    (interactive (cons current-prefix-arg (notmuch-interactive-region)))
    (notmuch-search-tag
     (notmuch-tag-change-list '("-inbox" "+flagged") unflag) beg end)
    (when (eq beg end)
      (notmuch-search-next-thread)))
  (advice-add #'notmuch-poll-and-refresh-this-buffer :before
              #'+mail/sync-mail)
  (advice-add #'notmuch-poll-and-refresh-this-buffer :after
              #'+mail/trash-junk)
  (with-eval-after-load "evil-collection"
    (evil-collection-notmuch-setup)))

Smtpmail

(use-package smtpmail
  :after notmuch
  :commands mail-send
  :custom
  (smtpmail-smtp-server "mail.aryadevchavali.com")
  (smtpmail-smtp-user "aryadev")
  (smtpmail-smtp-service 587)
  (smtpmail-stream-type 'starttls)
  :init
  (setq send-mail-function #'smtpmail-send-it
        message-send-mail-function #'smtpmail-send-it))

Dired

Setup for dired. Make dired-hide-details-mode the default mode when using dired-mode, as it removes the clutter. Setup evil collection for dired (even though dired doesn't really conflict with evil, there are some corners I'd like to adjust).

(use-package dired
  :straight nil
  :commands (dired find-dired)
  :hook
  (dired-mode-hook              . auto-revert-mode)
  (dired-mode-hook              . dired-hide-details-mode)
  :init
  (setq-default dired-listing-switches "-AFBl --group-directories-first"
                dired-omit-files "^\\.")
  (with-eval-after-load "evil-collection"
    (evil-collection-dired-setup))
  :general
  (nmmap
    :keymaps 'dired-mode-map
    "T" #'dired-create-empty-file)
  (dir-leader
    "w" '(wdired-change-to-wdired-mode :which-key "Write dired")
    "f" #'find-dired
    "d" #'dired
    "D" #'dired-other-frame
    "p" `((proc (interactive)
                (dired "~/Text/PDFs/"))
          :which-key "Open PDFs"))
  :config
  (defun +dired/insert-all-subdirectories ()
    "Insert all subdirectories currently viewable."
    (interactive)
    (dired-mark-directories nil)
    (dolist #'dired-insert-subdir (dired-get-marked-files))
    (dired-unmark-all-marks))

  (nmmap
    :keymaps 'dired-mode-map
    "SPC"   nil
    "SPC ," nil)

  (local-leader
    :keymaps 'dired-mode-map
    "l" #'dired-maybe-insert-subdir
    "m" #'dired-mark-files-regexp
    "u" #'dired-undo))

fd-dired

Uses fd for finding file results in a directory: find-dired -> fd-dired.

(use-package fd-dired
  :after dired
  :straight t
  :general
  (dir-leader
    "g" #'fd-dired))

Xwidget

Xwidget is a package which allows for the insertion of arbitrary xwidgets into Emacs through buffers. It must be compiled into Emacs so you might need to customise your install. One of its premier uses is in navigating the web which it provides through the function xwidget-webkit-browse-url. This renders a fully functional web browser within Emacs.

Though I am not to keen on using Emacs to browse the web via xwidget (EWW does a good job on its own), I am very interested in its capability to render pages with JavaScript, as it may come of use when doing web development. I can see the results of work very quickly without switching windows all within Emacs.

Xwidget Core

(use-package xwidget
  :straight nil
  :display
  ("\\*xwidget.*"
   (display-buffer-pop-up-frame))
  :general
  (app-leader
    "u" #'xwidget-webkit-browse-url)
  (nmmap
    :keymaps 'xwidget-webkit-mode-map
    "q"         #'quit-window
    "h"         #'xwidget-webkit-scroll-backward
    "j"         #'xwidget-webkit-scroll-up
    "k"         #'xwidget-webkit-scroll-down
    "l"         #'xwidget-webkit-scroll-forward
    "+"         #'xwidget-webkit-zoom-in
    "-"         #'xwidget-webkit-zoom-out
    (kbd "C-f") #'xwidget-webkit-scroll-up
    (kbd "C-b") #'xwidget-webkit-scroll-down
    "H"         #'xwidget-webkit-back
    "L"         #'xwidget-webkit-forward
    "gu"        #'xwidget-webkit-browse-url
    "gr"        #'xwidget-webkit-reload
    "gg"        #'xwidget-webkit-scroll-top
    "G"         #'xwidget-webkit-scroll-bottom))

Xwidget Extensions

Define a function +xwidget/render-file that reads a file name and presents it in an xwidget. If the current file is an HTML file, ask if user wants to open current file. Bind it to aU in the leader.

Also define a function +xwidget/search-query that first asks the user what search engine they want to use (Duck Duck Go and DevDocs currently) then asks for a query, which it parses then presents in an xwidget window. Bind to as in the leader.

(use-package xwidget
  :straight nil
  :commands (+xwidget/render-file +xwidget/search)
  :general
  (app-leader
    "U" #'+xwidget/render-file
    "s" #'+xwidget/search)
  :config
  (setenv "WEBKIT_FORCE_SANDBOX" "0")
  (defun +xwidget/render-file (&optional FORCE)
    "Find file (or use current file) and render in xwidget."
    (interactive)
    (cond
     ((and (not FORCE) (or (string= (replace-regexp-in-string ".*.html"
                                                              "html" (buffer-name)) "html")
                           (eq major-mode 'web-mode)
                           (eq major-mode 'html-mode))) ; If in html file
      (if (y-or-n-p "Open current file?: ") ; Maybe they want to open a separate file
          (xwidget-webkit-browse-url (format "file://%s" (buffer-file-name)))
        (+xwidget/render-file t))) ; recurse and open file via prompt
     (t
      (xwidget-webkit-browse-url
       (format "file://%s" (read-file-name "Enter file to open: "))))))

  (defun +xwidget/search ()
    "Run a search query on some search engine and display in
xwidget."
    (interactive)
    (let* ((engine (completing-read "Engine: " '("duckduckgo.com" "devdocs.io") nil t))
           (query-raw (read-string "Enter query: "))
           (query
            (cond
             ((string= engine "duckduckgo.com") query-raw)
             ((string= engine "devdocs.io") (concat "_ " query-raw)))))
      (xwidget-webkit-browse-url (concat "https://" engine "/?q=" query)))))

Eshell

Why Eshell?

Eshell is an integrated shell environment for Emacs, written in Emacs Lisp. I argue that it is the best shell/command interpreter to use in Emacs.

Eshell is unlike the alternatives in Emacs as it's a shell first, not a terminal emulator. It has the ability to spoof some aspects of a terminal emulator (through the shell parser), but it is NOT a terminal emulator.

The killer benefits of eshell (which would appeal to Emacs users) are a direct result of eshell being written in Emacs lisp:

  • incredible integration with Emacs utilities (such as dired, find-file, any read functions, to name a few)
  • very extensible, easy to write new commands which leverage Emacs commands as well as external utilities
  • agnostic of platform: "eshell/cd" will call the underlying change directory function for you, so commands will (usually) mean the same thing regardless of platform

    • this means as long as Emacs runs, you can run eshell

However, my favourite feature of eshell is the set of evaluators that run on command input. Some of the benefits listed above come as a result of this powerful feature. These evaluators are described below.

Lisp evaluator: works on braced expressions, evaluating them as Lisp expressions (e.g. (message "Hello, World!\n")). Any returned objects are printed. This makes eshell a LISP REPL!

External evaluator: works within curly braces, evaluating them via some external shell process (like sh) (e.g. {echo "Hello, world!\n"}). This makes eshell a (kinda dumb) terminal emulator!

The alias evaluator is the top level evaluator. It is the main evaluator for each expression given to eshell. When given an expression it tries to evaluate it by testing against these conditions:

  • it's an alias defined by the user or in the eshell/ namespace of functions (simplest evaluator)
  • it's some form of lisp expression (lisp evaluator)
  • it's an external command (bash evaluator)

Essentially, you get the best of both Emacs and external shell programs ALL WITHIN Emacs for free.

Eshell functionality

Bind some evil-like movements for easy shell usage, and a toggle function to pull up the eshell quickly.

(use-package eshell
  :commands +shell/toggle-eshell
  :general
  (shell-leader
    "t" #'+shell/toggle-eshell)
  :init
  (add-hook
   'eshell-mode-hook
   (proc
    (interactive)
    (general-def
      :states '(normal insert)
      :keymaps 'eshell-mode-map
      "M-l" (proc (interactive) (eshell/clear)
                  "M-j" #'eshell-next-matching-input-from-input
                  "M-k" #'eshell-previous-matching-input-from-input)
      (local-leader
        :keymaps 'eshell-mode-map
        "c" (proc (interactive) (eshell/clear)
                  (recenter))
        "k" #'eshell-kill-process))))
  :config
  (+oreo/create-toggle-function
   +shell/toggle-eshell
   "*eshell*"
   eshell
   t))

Eshell pretty symbols and display

Pretty symbols and a display record.

(use-package eshell
  :defer t
  :pretty
  (eshell-mode-hook
   ("lambda"  . "λ")
   ("numberp" . "")
   ("t"       . "⊨")
   ("nil"     . "Ø"))
  :display
  ("\\*e?shell\\*" ; for general shells as well
   (display-buffer-at-bottom)
   (window-height . 0.25)))

Eshell variables and aliases

Set some sane defaults, a banner and a prompt. The prompt checks for a git repo in the current directory and provides some extra information in that case (in particular, branch name and if there any changes that haven't been committed).

Also add eshell/goto, which is actually a command accessible from within eshell (this is because eshell/* creates an accessible function within eshell with name *). eshell/goto makes it easier to change directories by using Emacs' find-file interface (which is much faster than cd ..; ls -l).

(use-package eshell
  :config
  (defun +eshell/get-git-properties ()
    (let* ((git-branch (shell-command-to-string "git branch"))
           (is-repo (string= (if (string= git-branch "") ""
                               (substring git-branch 0 1)) "*")))
      (if (not is-repo) ""
        (concat
         "("
         (nth 2 (split-string git-branch "\n\\|\\*\\| "))
         "<"
         (if (string= "" (shell-command-to-string "git status | grep 'up to date'"))
             "×"
           "✓")
         ">)"))))
  (setq eshell-cmpl-ignore-case t
        eshell-cd-on-directory t
        eshell-banner-message (concat (shell-command-to-string "figlet eshell") "\n")
        eshell-prompt-function
        (proc
         (let ((properties (+eshell/get-git-properties)))
           (concat
            properties
            (format "[%s]\n" (abbreviate-file-name (eshell/pwd)))
            "λ ")))
        eshell-prompt-regexp "^λ ")

  (defun eshell/goto (&rest args)
    "Use `read-directory-name' to change directories."
    (eshell/cd (list (read-directory-name "Enter directory to go to:")))))

Eshell change directory quickly

eshell/goto is a better cd for eshell. However it is really just a plaster over a bigger issue for my workflow; many times I want eshell to be present in the current directory of the buffer I am using.

(use-package eshell
  :straight nil
  :general
  (shell-leader
    "T" #'+eshell/current-buffer)
  :config
  (defun +eshell/current-buffer ()
    (interactive)
    (let  ((dir (if buffer-file-name
                    (file-name-directory buffer-file-name)
                  (if default-directory
                      default-directory
                    nil)))
           (buf (eshell)))
      (if dir
          (with-current-buffer buf
            (eshell/cd dir)
            (eshell-send-input))
        (message "Could not switch eshell: buffer is not real file")))))

Elfeed

Elfeed is the perfect RSS feed reader, integrated into Emacs perfectly. I've got a set of feeds that I use for a large variety of stuff, mostly media and entertainment. I've also bound "<leader> ar" to elfeed for loading the system.

(use-package elfeed
  :general
  (app-leader "r" #'elfeed)
  (nmmap
    :keymaps 'elfeed-search-mode-map
    "gr"       #'elfeed-update
    "s"        #'elfeed-search-live-filter
    "<return>" #'elfeed-search-show-entry)
  :init
  (setq elfeed-db-directory (no-littering-expand-var-file-name "elfeed/"))
  (setq +rss/feed-urls
        '(("Arch Linux"
           "https://www.archlinux.org/feeds/news/"
           Linux)
          ("LEMMiNO"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCRcgy6GzDeccI7dkbbBna3Q"
           YouTube Stories)
          ("The Onion"
           "https://www.theonion.com/rss"
           Social)
          ("Stack exchange"
           "http://morss.aryadevchavali.com/stackexchange.com/feeds/questions"
           Social)
          ("Dark Sominium"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UC_e39rWdkQqo5-LbiLiU10g"
           YouTube Stories)
          ("Dark Sominium Music"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCkLiZ_zLynyNd5fd62hg1Kw"
           YouTube Music)
          ("Nexpo"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCpFFItkfZz1qz5PpHpqzYBw"
           YouTube)
          ("Techquickie"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UC0vBXGSyV14uvJ4hECDOl0Q"
           YouTube)
          ("3B1B"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCYO_jab_esuFRV4b17AJtAw"
           YouTube)
          ("Fredrik Knusden"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCbWcXB0PoqOsAvAdfzWMf0w"
           YouTube Stories)
          ("Barely Sociable"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UC9PIn6-XuRKZ5HmYeu46AIw"
           YouTube Stories)
          ("Atrocity Guide"
           "https://www.youtube.com/feeds/videos.xml?channel_id=UCn8OYopT9e8tng-CGEWzfmw"
           YouTube Stories)
          ("Hacker News"
           "http://morss.aryadevchavali.com/news.ycombinator.com/rss"
           Social)
          ("Hacker Factor"
           "https://www.hackerfactor.com/blog/index.php?/feeds/index.rss2"
           Social)
          ("BBC Top News"
           "http://morss.aryadevchavali.com/feeds.bbci.co.uk/news/rss.xml"
           News)
          ("BBC Tech News"
           "http://morss.aryadevchavali.com/feeds.bbci.co.uk/news/technology/rss.xml"
           News)))
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-elfeed-setup))
  (setq elfeed-feeds (cl-map 'list #'(lambda (item)
                                       (append (list (nth 1 item)) (cdr (cdr item))))
                             +rss/feed-urls)))

Magit

Magit is the git porcelain for Emacs, which perfectly encapsulates the git cli. In this case I just need to setup the bindings for it. As magit will definitely load after evil (as it must be run by a binding, and evil will load after init), I can use evil-collection freely. Also, define an auto insert for commit messages so that I don't need to write everything myself.

(use-package magit
  :defer t
  :display
  ("magit:.*"
   (display-buffer-same-window)
   (inhibit-duplicate-buffer . t))
  ("magit-diff:.*"
   (display-buffer-below-selected))
  ("magit-log:.*"
   (display-buffer-same-window))
  :general
  (leader "g" '(magit-status :which-key "Magit"))
  :init
  (setq vc-follow-symlinks t)
  (with-eval-after-load "autoinsert"
    (define-auto-insert '("COMMIT_EDITMSG" , "Commit")
      '(nil
        "(" (read-string "Enter feature/module: ") ")"
        (read-string "Enter simple description: ") "\n\n"
        _)))
  :config
  (with-eval-after-load "evil"
    (evil-set-initial-state 'magit-status-mode 'motion))
  (with-eval-after-load "evil-collection"
    (evil-collection-magit-setup)))

IBuffer

(use-package ibuffer
  :general
  (buffer-leader
    "i" #'ibuffer)
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-ibuffer-setup)))

Processes

Emacs has two systems for process management:

  • proced: a general 'top' like interface which allows general management of linux processes
  • list-processes: a specific Emacs based system that lists processes spawned by Emacs (similar to a top for Emacs specifically)

Proced

Core proced config, just a few bindings and evil collection setup.

(use-package proced
  :straight nil
  :general
  (app-leader
    "p" #'proced)
  (nmap
    :keymaps 'proced-mode-map
    "za" #'proced-toggle-auto-update)
  :display
  ("\\*Proced\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :init
  (setq proced-auto-update-interval 0.5)
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-proced-setup)))

Along with that I setup the package proced-narrow which allows further filtering of the process list.

(use-package proced-narrow
  :straight t
  :after proced
  :general
  (nmap
    :keymaps 'proced-mode-map
    "%" #'proced-narrow))

Calculator

Surprise, surprise Emacs comes with a calculator.

Greater surprise, this thing is over powered. It can perform the following (and more):

  • Matrix calculations
  • Generalised calculus operations
  • Equation solvers for n-degree multi-variable polynomials
  • Embedded mode!

calc-mode is a calculator system within Emacs that provides a diverse array of mathematical operations. It uses reverse polish notation to do calculations (though there is a standard infix algebraic notation mode).

Embedded mode allows computation with the current buffer as the echo area. This basically means I can compute stuff within a buffer without invoking calc directly: $1 + 2\rightarrow_{\text{calc-embed}} 3$.

(use-package calc
  :straight nil
  :display
  ("*Calculator*"
   (display-buffer-at-bottom)
   (window-height . 0.18))
  :general
  (app-leader
    "c" #'calc-dispatch)
  (mode-leader
    "c" #'calc-embedded)
  :init
  (setq calc-algebraic-mode t)
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-calc-setup)))

Calctex

calc-mode also has a 3rd party package called calctex. It renders mathematical expressions within calc as if they were rendered in TeX. You can also copy the expressions in their TeX forms, which is pretty useful when writing a paper. I've set a very specific lock on this repository as it's got quite a messy work-tree and this commit seems to work for me given the various TeX utilities installed via Arch.

(use-package calctex
  :after calc
  :straight (calctex :type git :host github :repo "johnbcoughlin/calctex")
  :hook (calc-mode-hook . calctex-mode))

Ledger

(use-package ledger-mode
  :defer t)

(use-package evil-ledger
  :after ledger-mode)

Zone

Of course Emacs has a cool screensaver software.

(use-package zone-matrix
  :straight t
  :after dashboard
  :init
  (setq zone-programs
        [zone-pgm-jitter
         zone-pgm-putz-with-case
         zone-pgm-dissolve
         zone-pgm-whack-chars
         zone-pgm-drip
         zone-pgm-rat-race
         zone-pgm-random-life
         zone-matrix
         ])
  :config
  (zone-when-idle 15))

Compilation

Colourising the compilation buffer so ANSI colour codes get computed.

(use-package compile
  :straight nil
  :general
  (code-leader
    "j" #'next-error
    "k" #'previous-error
    "c" #'compile
    "C" #'recompile)
  :display
  ("\\*compilation\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (defun +compile/colourise ()
    "Colourise the emacs compilation buffer."
    (interactive)
    (let ((inhibit-read-only t))
      (ansi-color-apply-on-region (point-min) (point-max))))
  (add-hook 'compilation-filter-hook #'+compile/colourise))

Text modes

Standard packages and configurations for text-mode and its derived modes.

Flyspell

Flyspell allows me to quickly spell check text documents. I use flyspell primarily in org mode, as that is my preferred prose writing software, but I also need it in commit messages and so on. So flyspell-mode should be hooked to text-mode.

(use-package flyspell
  :hook (text-mode-hook . flyspell-mode)
  :general
  (nmmap
    :keymaps 'text-mode-map
    (kbd "M-C") #'flyspell-correct-word-before-point
    (kbd "M-c") #'flyspell-auto-correct-word)
  (local-leader
    :keymaps 'flyspell-mode-map
    "S" #'flyspell-region)
  (mode-leader
    "s" #'flyspell-mode))

Undo tree

Undo tree sits on top of the incredible Emacs undo capabilities. Provides a nice visual for edits and a great way to produce branches of edits. Also allows saving of undo trees, which makes Emacs a quasi version control system in and of itself! The only extra necessary would be describing changes…

(use-package undo-tree
  :straight t
  :hook (after-init-hook . global-undo-tree-mode)
  :init
  (setq undo-tree-auto-save-history t)
  :general
  (leader
    "U" #'undo-tree-visualize))

Whitespace

Deleting whitespace, highlighting when going beyond the 80th character limit, all good stuff. I don't want to highlight whitespace for general mode categories (Lisp shouldn't really have an 80 character limit), so set it for specific modes need the help.

(use-package whitespace
  :straight nil
  :general
  (nmmap
    "M--"   #'whitespace-cleanup)
  (mode-leader
    "w" #'whitespace-mode)
  :hook
  (before-save-hook  . whitespace-cleanup)
  (c-mode-hook       . whitespace-mode)
  (c++-mode-hook     . whitespace-mode)
  (haskell-mode-hook . whitespace-mode)
  (python-mode-hook  . whitespace-mode)
  (org-mode-hook     . whitespace-mode)
  (text-mode-hook    . whitespace-mode)
  :init
  (setq whitespace-style '(face lines-tail spaces tabs tab-mark trailing newline)
        whitespace-line-column 80))

Set auto-fill-mode for all text-modes

Auto fill mode automatically newlines text on 80 characters, which looks nice and integrates well with Evil's sentence and paragraph text objects.

(add-hook 'text-mode-hook #'auto-fill-mode)

Show-paren-mode

Show parenthesis for Emacs

(add-hook 'prog-mode-hook #'show-paren-mode)

Smartparens

Smartparens is a smarter electric-parens, it's much more aware of context and easier to use.

(use-package smartparens
  :hook
  (prog-mode-hook . smartparens-mode)
  (text-mode-hook . smartparens-mode)
  :after evil
  :config
  (setq sp-highlight-pair-overlay nil
        sp-highlight-wrap-overlay t
        sp-highlight-wrap-tag-overlay t)

  (let ((unless-list '(sp-point-before-word-p
                       sp-point-after-word-p
                       sp-point-before-same-p)))
    (sp-pair "'"  nil :unless unless-list)
    (sp-pair "\"" nil :unless unless-list))
  (sp-local-pair sp-lisp-modes "(" ")" :unless '(:rem sp-point-before-same-p))
  (require 'smartparens-config))

Thesaurus

le-thesaurus is a great extension for quickly searching up words for synonyms or antonyms. I may need it anywhere so I bind it to all keymaps.

(use-package le-thesaurus
  :straight t
  :general
  (local-leader
    :keymaps 'override
    "[" #'le-thesaurus-get-synonyms
    "]" #'le-thesaurus-get-antonyms))

Programming modes

Packages that help with programming in general, providing IDE like capabilities.

Eldoc

Eldoc presents documentation to the user upon placing ones cursor upon any symbol. This is very useful when programming as it:

  • presents the arguments of functions while writing calls for them
  • presents typing and documentation of variables

Eldoc box makes the help buffer a hovering box instead of printing it in the minibuffer. A lot cleaner.

(use-package eldoc
  :straight nil
  :hook (prog-mode-hook . eldoc-mode)
  :init
  (global-eldoc-mode 1))

(use-package eldoc-box
  :hook (eldoc-mode-hook . eldoc-box-hover-mode)
  :init
  (setq eldoc-box-position-function #'eldoc-box--default-upper-corner-position-function
        eldoc-box-clear-with-C-g t))

Eglot

Eglot is package to communicate with LSP servers for better programming capabilities. Interactions with a server provide results to the client, done through JSON.

NOTE: Emacs 28.1 comes with better JSON parsing, which makes Eglot much faster.

2023-03-26: I've found Eglot to be useful sometimes, but many of the projects I work on don't require a heavy server setup to efficiently edit and check for errors; Emacs provides a lot of functionality.

(use-package eglot
  :after project
  :defer t
  :general
  (code-leader
    :keymaps 'eglot-mode-map
    "f" #'eglot-format
    "a" #'eglot-code-actions
    "r" #'eglot-rename
    "R" #'eglot-reconnect)
  ;; :init
  ;; (setq eglot-stay-out-of '(flymake))
  :config
  (add-to-list 'eglot-server-programs '((c++-mode c-mode) "clangd")))

Flycheck

Flycheck is the checking system for Emacs. I don't necessarily like having all my code checked all the time, so I haven't added a hook to prog-mode as it would be better for me to decide when I want checking and when I don't.

(use-package flycheck
  :commands (flycheck-mode flycheck-list-errors)
  :general
  (mode-leader
    "f" #'flycheck-mode)
  (code-leader
    "x" #'flycheck-list-errors
    "J" #'flycheck-next-error
    "K" #'flycheck-previous-error)
  :display
  ("\\*Flycheck.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (with-eval-after-load "evil-collection"
    (evil-collection-flycheck-setup)))

Tabs and spaces

By default, turn off tabs and set the tab width to two.

(setq-default indent-tabs-mode nil
              tab-width 2)

However, if necessary later, define a function that may activate tabs locally.

(defun +oreo/activate-tabs ()
  (interactive)
  (setq-local indent-tabs-mode t))

Highlight todo items

TODO items are highlighted in org-mode, but not necessarily in every mode. This minor mode highlights all TODO like items via a list of strings to match. It also configures faces to use when highlighting. I hook it to prog-mode.

(use-package hl-todo
  :after prog-mode
  :hook (prog-mode-hook . hl-todo-mode)
  :init
  (setq hl-todo-keyword-faces
        '(("TODO"  . "#E50000")
          ("WIP"   . "#ffa500")
          ("NOTE"  . "#00CC00")
          ("FIXME" . "#d02090"))))

Hide-show mode

Turn on hs-minor-mode for all prog-mode. This provides folds for free.

(use-package hideshow
  :straight nil
  :hook (prog-mode-hook . hs-minor-mode))

Aggressive indenting

Essentially my dream editing experience: when I type stuff in, try and indent it for me on the fly. Just checkout the page, any description I give won't do it justice.

(use-package aggressive-indent
  :straight t
  :demand t
  :hook
  (prog-mode-hook . aggressive-indent-mode))

Org mode

2023-03-30: finally decided to give org mode its own section.

Org is, at its most basic, a markup language. Files use the ".org" extension and use org-mode to write text, with the ability to export to a few formats, all within Emacs. However, this is a massive disservice to its incredible capabilities:

  • Complete spreadsheet system, with formulas (including calc-mode integration)
  • Evaluation of code blocks, even using the results of them in exports (to, say, a $\LaTeX$ or HTML document)

    • This includes exporting all code blocks of a document to a code file, say all the emacs-lisp files in this document to config.el (literate)
  • Complete calendar/todo system with deadlines, scheduling and repeaters
  • Export to a variety of formats or make your own export engine using the org AST!

    • Writing latex in document, with ability to render them on demand, and exporting to PDFs through Latex

Aesthetic defaults

Org has a ton of settings to tweak, which change your experience quite a bit. My setup should be as portable as possible and (sometimes) I need to access org mode files in other editors, so org files should be as close to clear text as possible. This is the guiding philosophy that essentially makes most of my options pretty immediate.

Some arbitrary notes:

  • By default ~/Text is my directory for text files. I actually have a repository that manages this directory for agenda files and other documents
  • Indentation in file should not be allowed, i.e. text indentation, as that forces other editors to read it a certain way as well. It seems obtrusive hence it's off.
  • Org startup indented is on by default as most documents do benefit from the indentation, but I do turn it off for some files via #+startup:noindent
  • When opening an org document there can be a lot of headings, so I set folding to just content
  • Org documents can also have a lot of latex previews, which make opening some after a while a massive hassle. If I want to see the preview, I'll do it myself, so turn it off.
  • Org manages windowing itself, to some extent, so I set those options to be as unobtrusive as possible
(use-package org
  :defer t
  :straight t
  :init
  (setq
   org-directory "~/Text"
   org-adapt-indentation nil
   org-indent-mode nil
   org-startup-indented t
   org-startup-folded 'content
   org-startup-with-latex-preview nil
   org-imenu-depth 10
   org-src-window-setup 'current-window
   org-indirect-buffer-display 'current-window
   org-link-frame-setup '((vm . vm-visit-folder-other-frame)
                          (vm-imap . vm-visit-imap-folder-other-frame)
                          (file . find-file))))

Latex options

Org mode has deep integration with latex, can export to PDF and even display latex fragments in the document directly. I setup the pdf-process, code listing options via minted and the format options for latex fragments.

(use-package org
  :defer t
  :init
  (setq org-format-latex-options '(:foreground default :background default :scale 2
                                   :html-foreground "Black" :html-background "Transparent"
                                   :html-scale 1.0 :matchers ("begin" "$1" "$" "$$" "\\(" "\\["))
        org-latex-listings 'minted
        org-latex-minted-langs '((emacs-lisp "common-lisp")
                                 (ledger "text")
                                 (cc "c++")
                                 (cperl "perl")
                                 (shell-script "bash")
                                 (caml "ocaml"))
        org-latex-packages-alist '(("" "minted"))
        org-latex-pdf-process
        '("latexmk -pdfxe -bibtex -f -shell-escape %f")
        org-latex-minted-options '(("style" "colorful")
                                   ("linenos")
                                   ("frame" "single")
                                   ("mathescape")
                                   ("fontfamily" "courier")
                                   ("samepage" "false")
                                   ("breaklines" "true")
                                   ("breakanywhere" "true"))))

Org Core Variables

Tons of variables for org-mode, including a ton of latex ones. Can't really explain because it sets up quite a lot of local stuff. Also I copy pasted the majority of this, tweaking it till it felt good. Doom Emacs was very helpful here.

(use-package org
  :init
  (setq org-edit-src-content-indentation 0
        org-goto-interface 'outline
        org-imenu-depth 10
        org-export-backends '(ascii html latex odt icalendar)
        org-eldoc-breadcrumb-separator " → "
        org-enforce-todo-dependencies t
        org-fontify-quote-and-verse-blocks t
        org-fontify-whole-heading-line t
        org-footnote-auto-label t
        org-hide-leading-stars t
        org-hide-emphasis-markers nil
        org-image-actual-width nil
        org-priority-faces '((?A . error) (?B . warning) (?C . success))
        org-link-descriptive nil
        org-tags-column 0
        org-todo-keywords
        '((sequence "TODO" "WIP" "DONE")
          (sequence "PROJ" "WAIT" "COMPLETE"))
        org-use-sub-superscripts '{}
        org-babel-load-languages '((emacs-lisp . t)
                                   (lisp . t)
                                   (C . t)
                                   (python . t)
                                   (shell . t))))

Org Core Functionality

Hooks, prettify-symbols and records for auto insertion.

(use-package org
  :hook
  (org-mode-hook . prettify-symbols-mode)
  :display
  ("\\*Org Src.*"
   (display-buffer-same-window))
  :pretty
  (org-mode-hook
   ("#+begin_src" . "≫")
   ("#+end_src"   . "≪"))
  :init
  (with-eval-after-load "autoinsert"
    (define-auto-insert '("\\.org\\'" . "Org skeleton")
      '("Enter title: "
        "#+title: " str | (buffer-file-name) "\n"
        "#+author: " (read-string "Enter author: ") | user-full-name "\n"
        "#+description: " (read-string "Enter description: ") | "Description" "\n"
        "#+date: " (format-time-string "%Y-%m-%d" (current-time)) "\n"
        "* " _))))

Org Core Bindings

Some bindings for org mode.

(use-package org
  :after counsel
  :config
  (defun +org/swiper-goto ()
    (interactive)
    (swiper "^\\* "))
  :general
  (file-leader
    "w" #'org-capture
    "l" #'org-store-link
    "i" #'org-insert-last-stored-link)
  (code-leader
    "D" #'org-babel-detangle)
  (nmmap
    :keymaps 'org-mode-map
    [remap imenu] #'+org/swiper-goto)
  (local-leader
    :keymaps 'org-mode-map
    "l" '(nil :which-key "Links")
    "'" '(nil :which-key "Tables")
    "c" '(nil :which-key "Clocks"))
  (local-leader
    :keymaps 'org-mode-map
    :infix "l"
    "i" #'org-insert-link
    "l" #'org-open-at-point)
  (local-leader
    :keymaps 'org-mode-map
    :infix "'"
    "a" #'org-table-align
    "f" #'org-table-edit-formulas
    "t" #'org-table-toggle-coordinate-overlays
    "s" #'org-table-sum
    "e" #'org-table-calc-current-TBLFM
    "E" #'org-table-eval-formula)
  (local-leader
    :keymaps 'org-mode-map
    "i" #'org-clock-clock-in
    "o" #'org-clock-clock-out
    "c" #'org-clock-in-last
    "d" #'org-clock-display)
  (local-leader
    :keymaps 'org-mode-map
    "d" #'org-date-from-calendar
    "t" #'org-todo
    "T" #'org-babel-tangle
    "i" #'org-insert-structure-template
    "p" #'org-latex-preview
    "s" #'org-property-action
    "e" #'org-export-dispatch
    "o" #'org-edit-special))

Agenda

Org agenda provides a nice viewing for schedules. With org mode it's a very tidy way to manage your time.

(use-package org-agenda
  :after org
  :straight nil
  :init
  (defconst +org/agenda-root "~/Text"
    "Root directory for all agenda files")
  (setq org-agenda-files (list (expand-file-name +org/agenda-root))
        org-agenda-window-setup 'current-window
        org-agenda-skip-deadline-prewarning-if-scheduled t
        org-agenda-skip-scheduled-if-done t
        org-agenda-skip-deadline-if-done t
        org-agenda-start-with-entry-text-mode nil)
  :config
  (evil-set-initial-state 'org-agenda-mode 'normal)
  :general
  (file-leader
    "a" `(,(proc (interactive)
                 (find-file (completing-read "Enter directory: " org-agenda-files nil t)))
          :which-key "Open agenda directory"))

  (app-leader
    "a" #'org-agenda)

  (nmmap
    :keymaps 'org-agenda-mode-map
    "zd" #'org-agenda-day-view
    "zw" #'org-agenda-week-view
    "zm" #'org-agenda-month-view
    "gd" #'org-agenda-goto-date
    "RET" #'org-agenda-switch-to
    "J" #'org-agenda-later
    "K" #'org-agenda-earlier
    "t" #'org-agenda-todo
    "." #'org-agenda-goto-today
    "," #'org-agenda-goto-date
    "q" #'org-agenda-quit
    "r" #'org-agenda-redo))

Org clock-in

Org provides a nice timekeeping system that allows for managing how much time is taken per task. It even has an extensive reporting system to see how much time you spend on specific tasks or overall.

(use-package org-clock
  :after org
  :straight nil
  :init
  (defvar +org/clock-out-toggle-report nil
    "Non-nil means update the first clock report in the file every
time a clock out occurs.")
  :config
  (advice-add #'org-clock-out
              :after
              (proc (interactive)
                    (if +org/clock-out-toggle-report
                        (org-clock-report t))))
  :general
  (local-leader
    :keymaps 'org-mode-map
    :infix "c"
    "c" #'org-clock-in
    "o" #'org-clock-out
    "r" #'org-clock-report
    "t" (proc (interactive)
              (setq-local +org/clock-out-toggle-report
                          (not +org/clock-out-toggle-report)))))

Org on save

If +org/compile-to-pdf-on-save-p is non-nil, then compile to \(\LaTeX\) and run an async process to compile it to a PDF. Doesn't make Emacs hang (like org-latex-export-to-pdf) and doesn't randomly crash (like the async handler for org-export). Works really well with pdf-view-mode.

(use-package org
  :defer t
  :init
  (defvar +org/compile-to-pdf-on-save-p
    nil
    "Non-nil to activate compile functionality.")
  :general
  (local-leader
    :keymaps 'org-mode-map
    "C" (proc (interactive)
              (if (+org/compile-to-pdf-on-save-f)
                  (setq-local +org/compile-to-pdf-on-save-p nil)
                (setq-local +org/compile-to-pdf-on-save-p t))))
  :config
  (+oreo/create-auto-save
   (and (eq major-mode 'org-mode) +org/compile-to-pdf-on-save-p)
   (start-process-shell-command "" "*pdflatex*" (concat "pdflatex -shell-escape "
                                                        (org-latex-export-to-latex)))))

Org ref

(use-package org-ref
  :straight t
  :defer t
  :init
  (setq bibtex-files '("~/Text/bibliography.bib")
        bibtex-completion-bibliography '("~/Text/bibliography.bib")
        bibtex-completion-additional-search-fields '(keywords)))

Org ref ivy integration

Org ref requires ivy-bibtex to work properly with ivy, so we need to set that up as well

(use-package ivy-bibtex
  :straight t
  :after org-ref
  :config
  (require 'org-ref-ivy))

Org message

Org message allows for the use of org mode when composing mails, generating HTML multipart emails. This integrates the WYSIWYG experience with mail in Emacs while also providing powerful text features with basically no learning curve (as long as you've already learnt the basics of org).

(use-package org-msg
  :hook (message-mode-hook . org-msg-mode)
  :config
  (setq org-msg-options "html-postamble:nil H:5 num:nil ^:{} toc:nil author:nil email:nil \\n:t tex:dvipng"
        org-msg-greeting-name-limit 3)

  (add-to-list 'org-msg-enforce-css
               '(img latex-fragment-inline
                     ((transform . ,(format "translateY(-1px) scale(%.3f)"
                                            (/ 1.0 (if (boundp 'preview-scale)
                                                       preview-scale 1.4))))
                      (margin . "0 -0.35em")))))

Org for evil

Evil org for some nice bindings.

(use-package evil-org
  :hook (org-mode-hook . evil-org-mode))

Org reveal

Org reveal allows one to export org files as HTML presentations via reveal.js. Pretty nifty and it's easy to use.

(use-package ox-reveal
  :defer t
  :init
  (setq org-reveal-root "https://cdn.jsdelivr.net/npm/reveal.js"
        org-reveal-theme "sky"))

Org fragtog

Toggle latex fragments in org mode so you get fancy maths symbols. I use latex a bit in org mode as it is the premier way of getting mathematical symbols rendered, but org mode > latex.

Delimited environments are aplenty, escaped brackets and dollar signs are my favourite. Here's a snippet: $\int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}$.

(use-package org-fragtog
  :hook (org-mode-hook . org-fragtog-mode))

Org superstar

Org superstar adds cute little Unicode symbols for headers, much better than the default asterisks.

(use-package org-superstar
  :hook (org-mode-hook . org-superstar-mode))

Languages

Configuration for specific languages or file formats.

PDF

I use PDFs mostly for reading reports or papers. Though Emacs isn't my preferred application for viewing PDFs (I highly recommend Zathura), similar to most things with Emacs, having a PDF viewer builtin can be a very useful asset.

For example if I were editing an org document which I was eventually compiling into a PDF, my workflow would be much smoother with a PDF viewer within Emacs that I can open on another pane.

PDF tools

pdf-tools provides the necessary functionality for viewing PDFs. There is no proper PDF viewing without this package. evil-collection provides a setup for this mode, so use that.

(use-package pdf-tools
  :mode ("\\.[pP][dD][fF]\\'" . pdf-view-mode)
  :straight t
  :defer t
  :display
  ("^.*pdf$"
   (display-buffer-same-window)
   (inhibit-duplicate-buffer . t))
  :config
  (pdf-tools-install-noverify)
  (with-eval-after-load "evil-collection"
    (evil-collection-pdf-setup)))

PDF grep

PDF grep is a Linux tool that allows for searches against the text inside of PDFs similar to standard grep. This cannot be performed by standard grep due to how PDFs are encoded; they are not a clear text format.

(use-package pdfgrep
  :after pdf-tools
  :hook (pdf-view-mode-hook . pdfgrep-mode)
  :general
  (nmap
    :keymaps 'pdf-view-mode-map
    "M-g"    #'pdfgrep))

SQL

The default SQL package provides support for connecting to common database types (sqlite, mysql, etc) for auto completion and query execution. I don't use SQL currently but whenever I need it it's there.

(use-package sql
  :straight nil
  :init
  (setq sql-display-sqli-buffer-function nil))

Ada

Check out ada-mode, my custom ada-mode that replaces the default one. This mode just colourises stuff, and uses eglot and a language server to do the hard work.

(use-package ada-mode
  :straight nil
  :load-path "elisp/"
  :defer t
  :config
  (with-eval-after-load "eglot"
    (add-hook 'ada-mode-hook #'eglot)))

NHexl

Hexl-mode is the inbuilt package within Emacs to edit hex and binary format buffers. There are a few problems with hexl-mode though, including an annoying prompt on revert-buffer.

Thus, nhexl-mode! It comes with a few other improvements. Check out the page yourself.

(use-package nhexl-mode
  :straight t
  :mode "\\.bin")

C/C++

Setup for C and C++ modes via the cc-mode package. C and C++ are great languages for general purpose programming. My preferred choice when I want greater control over memory management.

cc-mode

(use-package cc-mode
  :defer t
  :hook
  (c-mode-hook   . auto-fill-mode)
  (c++-mode-hook . auto-fill-mode)
  :general
  (:keymaps '(c-mode-map c++-mode-map)
   :states '(normal motion visual)
   "(" #'c-beginning-of-statement
   ")" #'c-end-of-statement)
  :pretty
  (c-mode-hook
   ("puts"    . "φ")
   ("fputs"   . "ϕ")
   ("printf"  . "ω")
   ("fprintf" . "Ω")
   ("NULL"    . "Ø")
   ("true"    . "⊨")
   ("false"   . "⊭")
   ("!"       . "¬")
   ("&&"      . "⋀")
   ("||"      . "")
   ("for"     . "∀")
   ("return"  . "⟼"))
  (c++-mode-hook
   ("nullptr" . "Ø")
   ("string"  . "𝕊")
   ("vector"  . "")
   ("puts"    . "φ")
   ("fputs"   . "ϕ")
   ("printf"  . "ω")
   ("fprintf" . "Ω")
   ("NULL"    . "Ø")
   ("true"    . "⊨")
   ("false"   . "⊭")
   ("!"       . "¬")
   ("&&"      . "⋀")
   ("||"      . "")
   ("for"     . "∀")
   ("return"  . "⟼"))
  :init
  (setq-default c-basic-offset 2)
  (setq-default c-auto-newline nil)
  (setq-default c-default-style '((other . "user")))

  (with-eval-after-load "autoinsert"
    (define-auto-insert
      '("\\.c\\'" . "C skeleton")
      '(""
        "/* " (file-name-nondirectory (buffer-file-name (current-buffer))) "\n"
        " * Created: " (format-time-string "%Y-%m-%d") "\n"
        " * Author: " user-full-name "\n"
        " */\n"
        "\n"
        _))

    (define-auto-insert
      '("\\.cpp\\'" . "C++ skeleton")
      '(""
        "/* " (file-name-nondirectory (buffer-file-name (current-buffer))) "\n"
        " * Created: " (format-time-string "%Y-%m-%d") "\n"
        " * Author: " user-full-name "\n"
        " */\n"
        "\n"
        _)))
  :config
  (c-add-style
   "user"
   '((c-basic-offset . 2)
     (c-comment-only-line-offset . 0)
     (c-hanging-braces-alist (brace-list-open)
                             (brace-entry-open)
                             (substatement-open after)
                             (block-close . c-snug-do-while)
                             (arglist-cont-nonempty))
     (c-cleanup-list brace-else-brace)
     (c-offsets-alist
      (statement-block-intro . +)
      (substatement-open . 0)
      (access-label . -)
      (inline-open  . 0)
      (label . 0)
      (statement-cont . +)))))

Clang format

Clang format comes inbuilt with clang, so download that before using this. Formats C/C++ files depending on a format (checkout the Clang format config file in my dotfiles).

(use-package clang-format
  :straight nil
  :load-path "/usr/share/clang/"
  :after cc-mode
  :commands (+code/clang-format-region-or-buffer)
  :general
  (code-leader
    :keymaps '(c-mode-map c++-mode-map)
    "f" #'+code/clang-format-region-or-buffer)
  :config
  (defvar +code/clang-format-automatically t
    "Automatically call clang-format every time save occurs in C/C++
buffer")

  (+oreo/create-auto-save
   (and +code/clang-format-automatically
        (or (eq major-mode 'c-mode)
            (eq major-mode 'c++-mode)))
   (clang-format-buffer))

  (defun +code/clang-format-region-or-buffer ()
    (interactive)
    (if (mark)
        (clang-format-region (region-beginning) (region-end))
      (clang-format-buffer))))

Racket

A scheme with lots of stuff inside it. Using it for a language design book so it's useful to have some Emacs binds for it.

(use-package racket-mode
  :straight t
  :hook (racket-mode-hook . racket-xp-mode)
  :display
  ("\\*Racket.*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :general
  (local-leader
    :keymaps 'racket-mode-map
    "r" #'racket-run
    "i" #'racket-repl
    "sr" #'racket-send-region
    "sd" #'racket-send-definition))

CSharp

I sometimes use C# when I'm bored or if I'm trying out a language feature. However, if I desperately needed an easy way to make a fast-ish API server or some kinda industrial level project then C# would probably be the language I would reach for.

(use-package csharp-mode
  :defer t
  :pretty
  (csharp-mode-hook
   ("null"      . "∅")
   ("string"    . "𝕊")
   ("List"      . "")
   ("WriteLine" . "φ")
   ("Write"     . "ω")
   ("true"      . "⊨")
   ("false"     . "⊭")
   ("!"         . "¬")
   ("&&"        . "⋀")
   ("||"        . "")
   ("for"       . "∀")
   ("return"    . "⟼")))

Java

I kinda dislike Java, but if necessary I will code in it. Might have to use an IDE for the cooler features, but use Emacs for editing. Just setup a style and some pretty symbols.

(use-package ob-java
  :straight nil
  :defer t
  :pretty
  (java-mode-hook
   ("println" . "φ")
   ("printf"  . "ω")
   ("null"    . "Ø")
   ("true"    . "⊨")
   ("false"   . "⊭")
   ("!"       . "¬")
   ("&&"      . "⋀")
   ("||"      . "")
   ("for"     . "∀")
   ("return"  . "⟼"))
  :config
  (with-eval-after-load "cc-mode"
    (c-add-style
     "java"
     '((c-basic-offset . 4)
       (c-comment-only-line-offset 0 . 0)
       (c-offsets-alist
        (inline-open . 0)
        (topmost-intro-cont . +)
        (statement-block-intro . +)
        (knr-argdecl-intro . 5)
        (substatement-open . 0)
        (substatement-label . +)
        (label . +)
        (statement-case-open . +)
        (statement-cont . +)
        (arglist-intro . c-lineup-arglist-intro-after-paren)
        (arglist-close . c-lineup-arglist)
        (brace-list-intro first c-lineup-2nd-brace-entry-in-arglist c-lineup-class-decl-init-+ +)
        (access-label . 0)
        (inher-cont . c-lineup-java-inher)
        (func-decl-cont . c-lineup-java-throws))))
    (add-to-list 'c-default-style '(java-mode . "java")))

  (with-eval-after-load "abbrev"
    (define-abbrev-table 'java-mode-abbrev-table nil)
    (add-hook 'java-mode-hook
              (proc (setq-local local-abbrev-table java-mode-abbrev-table)))))

Haskell

Haskell is a static lazy functional programming language (what a mouthful). It's quite a beautiful language and really learning it will change the way you think about programming. However, my preferred functional language is still unfortunately Lisp so no extra brownie points there.

Here I configure the REPL for Haskell via the haskell-interactive-mode. I also load my custom package haskell-multiedit which allows a user to create temporary haskell-mode buffers that, upon completion, will run in the REPL. Even easier than making your own buffer.

(use-package haskell-mode
  :hook
  (haskell-mode-hook . haskell-indentation-mode)
  (haskell-mode-hook . interactive-haskell-mode)
  :custom
  (haskell-interactive-prompt "[λ] ")
  (haskell-interactive-prompt-cont "{λ} ")
  (haskell-interactive-popup-errors nil)
  (haskell-stylish-on-save nil)
  (haskell-process-type 'stack-ghci)
  :general
  (shell-leader
    "h" #'+shell/toggle-haskell-repl)
  :display
  ("\\*haskell.**\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (load (concat user-emacs-directory "elisp/haskell-multiedit.el"))
  (+oreo/create-toggle-function
   +shell/toggle-haskell-repl
   "*haskell*"
   haskell-interactive-bring
   nil))

Python

Works well for python. If you have pyls it should be on your path, so just run eglot if you need. But an LSP server is not necessary for a lot of my time in python.

(use-package python
  :defer t
  :straight nil
  :pretty
  (python-mode-hook
   ("None"   . "Ø")
   ("list"   . "")
   ("List"   . "")
   ("str"    . "𝕊")
   ("True"   . "⊨")
   ("False"  . "⊭")
   ("!"      . "¬")
   ("&&"     . "⋀")
   ("||"     . "")
   ("for"    . "∀")
   ("print"  . "φ")
   ("lambda" . "λ")
   ("return" . "⟼")
   ("yield"  . "⟻"))
  :init
  (setq python-indent-offset 4))

Python shell

Setup for python shell, including a toggle option

(use-package python
  :straight nil
  :commands +python/toggle-repl
  :general
  (shell-leader
    "p" #'+shell/python-toggle-repl)
  :display
  ("\\*Python\\*"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (+oreo/create-toggle-function
   +shell/python-toggle-repl
   "*Python*"
   run-python
   nil))

YAML

YAML is a data language which is useful for config files.

(use-package yaml-mode
  :straight t)

HTML/CSS/JS

Firstly, web mode for consistent colouring of syntax.

(use-package web-mode
  :mode ("\\.html" . web-mode)
  :mode ("\\.js"   . web-mode)
  :mode ("\\.css"  . web-mode)
  :custom
  ((web-mode-code-indent-offset 2)
   (web-mode-markup-indent-offset 2)
   (web-mode-css-indent-offset 2)))

Then emmet for super speed

(use-package emmet-mode
  :hook (web-mode-hook . emmet-mode)
  :general
  (imap
    :keymaps 'emmet-mode-keymap
    "TAB" #'emmet-expand-line
    "M-j" #'emmet-next-edit-point
    "M-k" #'emmet-prev-edit-point))

Typescript

Kinda expressive, interesting.

(use-package typescript-mode
  :defer t
  :init
  (setq typescript-indent-level 2))

Common Lisp

Common Lisp is a dialect of Lisp, the most common one around. Emacs comes with builtin Lisp support of course, but a REPL would be nice.

Enter SLY. Sly is a fork of SLIME and is mandatory for lisp development on Emacs.

(use-package sly
  :straight t
  :init
  (setq inferior-lisp-program "sbcl")
  :display
  ("\\*sly-db"
   (display-buffer-at-bottom)
   (window-height . 0.5))
  ("\\*sly-"
   (display-buffer-at-bottom)
   (window-height . 0.25))
  :config
  (evil-set-initial-state 'sly-db-mode 'emacs)
  (+oreo/create-toggle-function
   +shell/toggle-sly
   "*sly-mrepl for sbcl*"
   sly-mrepl
   nil)
  :general
  (nmap
    :keymaps '(lisp-mode-map sly-mrepl-mode-map)
    "gr" #'sly-eval-buffer
    "gd" #'sly-edit-definition
    "gR" #'sly-who-calls)
  (local-leader
    :keymaps '(lisp-mode-map sly-mrepl-mode-map)
    "s" #'+shell/toggle-sly
    "c" #'sly-compile-file
    "a" #'sly-apropos
    "d" #'sly-describe-symbol
    "E" #'sly-eval-defun)
  (local-leader
    :keymaps 'lisp-mode-map
    :infix "e"
    "b" #'sly-eval-buffer
    "e" #'sly-eval-last-expression
    "f" #'sly-eval-defun
    "r" #'sly-eval-region)
  (nmap
    :keymaps 'sly-inspector-mode-map
    "q" #'sly-inspector-quit))

Lisp indent function

Add a new lisp indent function which indents newline lists more appropriately.

(use-package lisp-mode
  :straight nil
  :pretty
  (lisp-mode-hook
   ("lambda"  . "λ")
   ("t"       . "⊨")
   ("nil"     . "Ø")
   ("and"     . "⋀")
   ("or"      . "")
   ("defun"   . "ƒ")
   ("for"     . "∀")
   ("mapc"    . "∀")
   ("mapcar"  . "∀"))
  :general
  (:states '(normal motion visual)
   :keymaps '(emacs-lisp-mode-map lisp-mode-map)
   ")" #'sp-next-sexp
   "(" #'sp-previous-sexp)
  :config
  (defun +oreo/lisp-indent-function (indent-point state)
    (let ((normal-indent (current-column))
          (orig-point (point)))
      (goto-char (1+ (elt state 1)))
      (parse-partial-sexp (point) calculate-lisp-indent-last-sexp 0 t)
      (cond
       ;; car of form doesn't seem to be a symbol, or is a keyword
       ((and (elt state 2)
             (or (not (looking-at "\\sw\\|\\s_"))
                 (looking-at ":")))
        (if (not (> (save-excursion (forward-line 1) (point))
                    calculate-lisp-indent-last-sexp))
            (progn (goto-char calculate-lisp-indent-last-sexp)
                   (beginning-of-line)
                   (parse-partial-sexp (point)
                                       calculate-lisp-indent-last-sexp 0 t)))
        ;; Indent under the list or under the first sexp on the same
        ;; line as calculate-lisp-indent-last-sexp.  Note that first
        ;; thing on that line has to be complete sexp since we are
        ;; inside the innermost containing sexp.
        (backward-prefix-chars)
        (current-column))
       ((and (save-excursion
               (goto-char indent-point)
               (skip-syntax-forward " ")
               (not (looking-at ":")))
             (save-excursion
               (goto-char orig-point)
               (looking-at ":")))
        (save-excursion
          (goto-char (+ 2 (elt state 1)))
          (current-column)))
       (t
        (let ((function (buffer-substring (point)
                                          (progn (forward-sexp 1) (point))))
              method)
          (setq method (or (function-get (intern-soft function)
                                         'lisp-indent-function)
                           (get (intern-soft function) 'lisp-indent-hook)))
          (cond ((or (eq method 'defun)
                     (and (null method)
                          (> (length function) 3)
                          (string-match "\\`def" function)))
                 (lisp-indent-defform state indent-point))
                ((integerp method)
                 (lisp-indent-specform method state
                                       indent-point normal-indent))
                (method
                 (funcall method indent-point state))))))))
  (setq-default lisp-indent-function #'+oreo/lisp-indent-function))

Emacs lisp

(use-package elisp-mode
  :straight nil
  :general
  (vmap
    :keymaps '(emacs-lisp-mode-map lisp-interaction-mode-map)
    "gr" #'eval-region))