793 lines
23 KiB
C
793 lines
23 KiB
C
/* Copyright (C) 2023 Aryadev Chavali
|
|
|
|
* You may distribute and modify this code under the terms of the
|
|
* GPLv2 license. You should have received a copy of the GPLv2
|
|
* license with this file. If not, please write to:
|
|
* aryadev@aryadevchavali.com.
|
|
|
|
* Created: 2023-10-15
|
|
* Author: Aryadev Chavali
|
|
* Description: Virtual machine implementation
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "./runtime.h"
|
|
|
|
const char *err_as_cstr(err_t err)
|
|
{
|
|
switch (err)
|
|
{
|
|
case ERR_OK:
|
|
return "OK";
|
|
case ERR_STACK_UNDERFLOW:
|
|
return "STACK_UNDERFLOW";
|
|
case ERR_STACK_OVERFLOW:
|
|
return "STACK_OVERFLOW";
|
|
case ERR_CALL_STACK_UNDERFLOW:
|
|
return "CALL_STACK_UNDERFLOW";
|
|
case ERR_CALL_STACK_OVERFLOW:
|
|
return "CALL_STACK_OVERFLOW";
|
|
case ERR_INVALID_OPCODE:
|
|
return "INVALID_OPCODE";
|
|
case ERR_INVALID_REGISTER_BYTE:
|
|
return "INVALID_REGISTER_BYTE";
|
|
case ERR_INVALID_REGISTER_HWORD:
|
|
return "INVALID_REGISTER_HWORD";
|
|
case ERR_INVALID_REGISTER_WORD:
|
|
return "INVALID_REGISTER_WORD";
|
|
case ERR_INVALID_PROGRAM_ADDRESS:
|
|
return "INVALID_PROGRAM_ADDRESS";
|
|
case ERR_INVALID_PAGE_ADDRESS:
|
|
return "INVALID_PAGE_ADDRESS";
|
|
case ERR_OUT_OF_BOUNDS:
|
|
return "OUT_OF_BOUNDS";
|
|
case ERR_END_OF_PROGRAM:
|
|
return "END_OF_PROGRAM";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
static_assert(NUMBER_OF_OPCODES == 99, "vm_execute: Out of date");
|
|
|
|
static_assert(DATA_TYPE_NIL == -1 && DATA_TYPE_WORD == 2,
|
|
"Code using OPCODE_DATA_TYPE for quick same type opcode "
|
|
"conversion may be out of date.");
|
|
|
|
static_assert(OP_PRINT_LONG - OP_PRINT_BYTE == 5,
|
|
"Implementation of OP_PRINT is out of date");
|
|
|
|
err_t vm_execute(vm_t *vm)
|
|
{
|
|
struct Program *prog = &vm->program;
|
|
prog_t program_data = prog->data;
|
|
if (prog->ptr >= program_data.count)
|
|
return ERR_END_OF_PROGRAM;
|
|
inst_t instruction = program_data.instructions[prog->ptr];
|
|
|
|
if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
|
|
{
|
|
err_t err = PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
|
|
if (err)
|
|
return err;
|
|
prog->ptr++;
|
|
}
|
|
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MOV) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_DUP) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET))
|
|
{
|
|
err_t err =
|
|
WORD_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
|
|
if (err)
|
|
return err;
|
|
prog->ptr++;
|
|
}
|
|
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_POP))
|
|
{
|
|
// NOTE: We always use the first register to hold the result of
|
|
// this pop.
|
|
|
|
// Here we add OP_MOV_BYTE and the data_type_t of the opcode to
|
|
// get the right typed OP_MOV opcode.
|
|
opcode_t mov_opcode =
|
|
OPCODE_DATA_TYPE(instruction.opcode, OP_POP) + OP_MOV_BYTE;
|
|
|
|
err_t err = WORD_ROUTINES[mov_opcode](vm, 0);
|
|
if (err)
|
|
return err;
|
|
prog->ptr++;
|
|
}
|
|
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_NOT) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_OR) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_AND) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_XOR) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_EQ) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PLUS) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_SUB) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MULT) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC_STACK) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET_STACK) ||
|
|
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET_STACK) ||
|
|
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_LT) ||
|
|
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_LTE) ||
|
|
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_GT) ||
|
|
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_GTE) ||
|
|
instruction.opcode == OP_MDELETE || instruction.opcode == OP_MSIZE)
|
|
{
|
|
err_t err = STACK_ROUTINES[instruction.opcode](vm);
|
|
if (err)
|
|
return err;
|
|
prog->ptr++;
|
|
}
|
|
else if (instruction.opcode == OP_JUMP_ABS)
|
|
return vm_jump(vm, instruction.operand.as_word);
|
|
else if (instruction.opcode == OP_JUMP_STACK)
|
|
{
|
|
data_t ret = {0};
|
|
// Set prog->ptr to the word on top of the stack
|
|
err_t err = vm_pop_word(vm, &ret);
|
|
if (err)
|
|
return err;
|
|
return vm_jump(vm, ret.as_word);
|
|
}
|
|
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF))
|
|
{
|
|
data_t datum = {0};
|
|
|
|
// Here we add OP_POP_BYTE and the data_type_t of the opcode to
|
|
// get the right typed OP_POP opcode.
|
|
opcode_t pop_opcode =
|
|
OPCODE_DATA_TYPE(instruction.opcode, OP_JUMP_IF) + OP_POP_BYTE;
|
|
|
|
err_t err = POP_ROUTINES[pop_opcode](vm, &datum);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
// If datum != 0 then jump, else go to the next instruction
|
|
if (datum.as_word != 0)
|
|
return vm_jump(vm, instruction.operand.as_word);
|
|
else
|
|
++prog->ptr;
|
|
}
|
|
else if (instruction.opcode == OP_CALL)
|
|
{
|
|
if (vm->call_stack.ptr >= vm->call_stack.max)
|
|
return ERR_CALL_STACK_OVERFLOW;
|
|
vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1;
|
|
return vm_jump(vm, instruction.operand.as_word);
|
|
}
|
|
else if (instruction.opcode == OP_CALL_STACK)
|
|
{
|
|
if (vm->call_stack.ptr >= vm->call_stack.max)
|
|
return ERR_CALL_STACK_OVERFLOW;
|
|
vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1;
|
|
data_t ret = {0};
|
|
err_t err = vm_pop_word(vm, &ret);
|
|
if (err)
|
|
return err;
|
|
return vm_jump(vm, ret.as_word);
|
|
}
|
|
else if (instruction.opcode == OP_RET)
|
|
{
|
|
if (vm->call_stack.ptr == 0)
|
|
return ERR_CALL_STACK_UNDERFLOW;
|
|
word_t addr = vm->call_stack.address_pointers[vm->call_stack.ptr - 1];
|
|
err_t err = vm_jump(vm, vm->call_stack.address_pointers[addr]);
|
|
if (err)
|
|
return err;
|
|
|
|
--vm->call_stack.ptr;
|
|
}
|
|
else if (SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PRINT))
|
|
{
|
|
// Steps: 1) Pop the datum 2) Figure out the format string 3) Print
|
|
|
|
int type = OPCODE_DATA_TYPE(instruction.opcode, OP_PRINT);
|
|
|
|
// Here we figure out the opcode to pop the correct datum by
|
|
// integer division of OPCODE_DATA_TYPE() by 2 as OPCODE_DATA_TYPE
|
|
// is [0,5] which under integer division by 2 maps to [0,2] where:
|
|
// 0,1 -> 0; 2,3 -> 1; 4,5 -> 2. This is exactly the map we want
|
|
// (should be obvious).
|
|
opcode_t pop_opcode = OP_POP_BYTE + (type / 2);
|
|
|
|
data_t datum = {0};
|
|
err_t err = POP_ROUTINES[pop_opcode](vm, &datum);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
// TODO: Figure out a way to ensure the ordering of OP_PRINT_*
|
|
// this ordering is BYTE, CHAR, HWORD, INTEGER, WORD, LONG.
|
|
// Perhaps via static_assert
|
|
|
|
// Make a table of format strings for each data_type
|
|
const char *format_strings[] = {
|
|
"0x%x",
|
|
"%c",
|
|
#if PRINT_HEX == 1
|
|
"0x%X",
|
|
"0x%X",
|
|
"0x%lX",
|
|
"0x%dX",
|
|
#else
|
|
("%" PRIu32),
|
|
("%" PRId32),
|
|
("%" PRIu64),
|
|
("%" PRId64),
|
|
#endif
|
|
};
|
|
|
|
printf(format_strings[type], datum);
|
|
|
|
prog->ptr++;
|
|
}
|
|
else if (instruction.opcode == OP_HALT)
|
|
{
|
|
// Do nothing here. Should be caught by callers of vm_execute
|
|
}
|
|
else
|
|
return ERR_INVALID_OPCODE;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_execute_all(vm_t *vm)
|
|
{
|
|
struct Program *program = &vm->program;
|
|
const size_t count = program->data.count;
|
|
err_t err = ERR_OK;
|
|
// Setup the initial address according to the program
|
|
program->ptr = program->data.start_address;
|
|
#if VERBOSE >= 1
|
|
size_t cycles = 0;
|
|
#endif
|
|
#if VERBOSE >= 2
|
|
registers_t prev_registers = vm->registers;
|
|
size_t prev_sptr = 0;
|
|
size_t prev_pages = 0;
|
|
size_t prev_cptr = 0;
|
|
#endif
|
|
while (program->ptr < count &&
|
|
program->data.instructions[program->ptr].opcode != OP_HALT)
|
|
{
|
|
#if VERBOSE >= 2
|
|
fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles);
|
|
fputs(
|
|
"----------------------------------------------------------------------"
|
|
"----------\n",
|
|
stdout);
|
|
vm_print_program(vm, stdout);
|
|
fputs(
|
|
"----------------------------------------------------------------------"
|
|
"----------\n",
|
|
stdout);
|
|
if (prev_cptr != vm->call_stack.ptr)
|
|
{
|
|
vm_print_call_stack(vm, stdout);
|
|
prev_cptr = vm->call_stack.ptr;
|
|
fputs("------------------------------------------------------------------"
|
|
"----"
|
|
"----------\n",
|
|
stdout);
|
|
}
|
|
if (prev_pages != vm->heap.pages)
|
|
{
|
|
vm_print_heap(vm, stdout);
|
|
prev_pages = vm->heap.pages;
|
|
fputs("------------------------------------------------------------------"
|
|
"----"
|
|
"----------\n",
|
|
stdout);
|
|
}
|
|
if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0)
|
|
{
|
|
vm_print_registers(vm, stdout);
|
|
prev_registers = vm->registers;
|
|
fputs("------------------------------------------------------------------"
|
|
"----"
|
|
"----------\n",
|
|
stdout);
|
|
}
|
|
if (prev_sptr != vm->stack.ptr)
|
|
{
|
|
vm_print_stack(vm, stdout);
|
|
prev_sptr = vm->stack.ptr;
|
|
fputs("------------------------------------------------------------------"
|
|
"----"
|
|
"----------\n",
|
|
stdout);
|
|
}
|
|
#endif
|
|
#if VERBOSE >= 1
|
|
++cycles;
|
|
#endif
|
|
err = vm_execute(vm);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
#if VERBOSE >= 1
|
|
fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n",
|
|
TERM_YELLOW, TERM_RESET, cycles);
|
|
vm_print_all(vm, stdout);
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
err_t vm_jump(vm_t *vm, word_t w)
|
|
{
|
|
if (w >= vm->program.data.count)
|
|
return ERR_INVALID_PROGRAM_ADDRESS;
|
|
vm->program.ptr = w;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_push_byte(vm_t *vm, data_t b)
|
|
{
|
|
if (vm->stack.ptr >= vm->stack.max)
|
|
return ERR_STACK_OVERFLOW;
|
|
vm->stack.data[vm->stack.ptr++] = b.as_byte;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_push_hword(vm_t *vm, data_t f)
|
|
{
|
|
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
|
|
return ERR_STACK_OVERFLOW;
|
|
byte_t bytes[HWORD_SIZE] = {0};
|
|
convert_hword_to_bytes(f.as_hword, bytes);
|
|
for (size_t i = 0; i < HWORD_SIZE; ++i)
|
|
{
|
|
byte_t b = bytes[HWORD_SIZE - i - 1];
|
|
err_t err = vm_push_byte(vm, DBYTE(b));
|
|
if (err)
|
|
return err;
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_push_word(vm_t *vm, data_t w)
|
|
{
|
|
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
|
|
return ERR_STACK_OVERFLOW;
|
|
byte_t bytes[WORD_SIZE] = {0};
|
|
convert_word_to_bytes(w.as_word, bytes);
|
|
for (size_t i = 0; i < WORD_SIZE; ++i)
|
|
{
|
|
byte_t b = bytes[WORD_SIZE - i - 1];
|
|
err_t err = vm_push_byte(vm, DBYTE(b));
|
|
if (err)
|
|
return err;
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_push_byte_register(vm_t *vm, word_t reg)
|
|
{
|
|
if (reg > vm->registers.used)
|
|
return ERR_INVALID_REGISTER_BYTE;
|
|
|
|
// Interpret each word based register as 8 byte registers
|
|
byte_t b = vm->registers.data[reg];
|
|
|
|
return vm_push_byte(vm, DBYTE(b));
|
|
}
|
|
|
|
err_t vm_push_hword_register(vm_t *vm, word_t reg)
|
|
{
|
|
if (reg > (vm->registers.used / HWORD_SIZE))
|
|
return ERR_INVALID_REGISTER_HWORD;
|
|
// Interpret the bytes at point reg * HWORD_SIZE as an hword
|
|
hword_t hw = *(hword_t *)(vm->registers.data + (reg * HWORD_SIZE));
|
|
return vm_push_hword(vm, DHWORD(hw));
|
|
}
|
|
|
|
err_t vm_push_word_register(vm_t *vm, word_t reg)
|
|
{
|
|
if (reg > (vm->registers.used / WORD_SIZE))
|
|
return ERR_INVALID_REGISTER_WORD;
|
|
return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg)));
|
|
}
|
|
|
|
err_t vm_mov_byte(vm_t *vm, word_t reg)
|
|
{
|
|
if (reg >= vm->registers.used)
|
|
{
|
|
// Expand capacity
|
|
darr_ensure_capacity(&vm->registers, reg - vm->registers.used);
|
|
vm->registers.used = MAX(vm->registers.used, reg + 1);
|
|
}
|
|
data_t ret = {0};
|
|
err_t err = vm_pop_byte(vm, &ret);
|
|
if (err)
|
|
return err;
|
|
vm->registers.data[reg] = ret.as_byte;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_mov_hword(vm_t *vm, word_t reg)
|
|
{
|
|
if (reg >= (vm->registers.used / HWORD_SIZE))
|
|
{
|
|
// Expand capacity till we can ensure that this is a valid
|
|
// register to use
|
|
|
|
// Number of hwords needed ontop of what is allocated:
|
|
const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE));
|
|
// Number of bytes needed ontop of what is allocated
|
|
const size_t diff = (hwords + 1) * HWORD_SIZE;
|
|
|
|
darr_ensure_capacity(&vm->registers, diff);
|
|
vm->registers.used = MAX(vm->registers.used, (reg + 1) * HWORD_SIZE);
|
|
}
|
|
data_t ret = {0};
|
|
err_t err = vm_pop_hword(vm, &ret);
|
|
if (err)
|
|
return err;
|
|
// Here we treat vm->registers as a set of hwords
|
|
hword_t *hword_ptr = (hword_t *)(vm->registers.data + (reg * HWORD_SIZE));
|
|
*hword_ptr = ret.as_hword;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_mov_word(vm_t *vm, word_t reg)
|
|
{
|
|
if (reg >= (vm->registers.used / WORD_SIZE))
|
|
{
|
|
// Number of hwords needed ontop of what is allocated:
|
|
const size_t words = (reg - (vm->registers.used / WORD_SIZE));
|
|
// Number of bytes needed ontop of what is allocated
|
|
const size_t diff = (words + 1) * WORD_SIZE;
|
|
|
|
darr_ensure_capacity(&vm->registers, diff);
|
|
vm->registers.used = MAX(vm->registers.used, (reg + 1) * WORD_SIZE);
|
|
}
|
|
else if (vm->stack.ptr < WORD_SIZE)
|
|
return ERR_STACK_UNDERFLOW;
|
|
data_t ret = {0};
|
|
err_t err = vm_pop_word(vm, &ret);
|
|
if (err)
|
|
return err;
|
|
((word_t *)(vm->registers.data))[reg] = ret.as_word;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_dup_byte(vm_t *vm, word_t w)
|
|
{
|
|
if (vm->stack.ptr < w + 1)
|
|
return ERR_STACK_UNDERFLOW;
|
|
return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w]));
|
|
}
|
|
|
|
err_t vm_dup_hword(vm_t *vm, word_t w)
|
|
{
|
|
if (vm->stack.ptr < HWORD_SIZE * (w + 1))
|
|
return ERR_STACK_UNDERFLOW;
|
|
byte_t bytes[HWORD_SIZE] = {0};
|
|
for (size_t i = 0; i < HWORD_SIZE; ++i)
|
|
bytes[HWORD_SIZE - i - 1] =
|
|
vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i];
|
|
return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes)));
|
|
}
|
|
|
|
err_t vm_dup_word(vm_t *vm, word_t w)
|
|
{
|
|
if (vm->stack.ptr < WORD_SIZE * (w + 1))
|
|
return ERR_STACK_UNDERFLOW;
|
|
byte_t bytes[WORD_SIZE] = {0};
|
|
for (size_t i = 0; i < WORD_SIZE; ++i)
|
|
bytes[WORD_SIZE - i - 1] =
|
|
vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i];
|
|
return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes)));
|
|
}
|
|
|
|
err_t vm_malloc_byte(vm_t *vm, word_t n)
|
|
{
|
|
page_t *page = heap_allocate(&vm->heap, n);
|
|
return vm_push_word(vm, DWORD((word_t)page));
|
|
}
|
|
|
|
err_t vm_malloc_hword(vm_t *vm, word_t n)
|
|
{
|
|
page_t *page = heap_allocate(&vm->heap, n * HWORD_SIZE);
|
|
return vm_push_word(vm, DWORD((word_t)page));
|
|
}
|
|
|
|
err_t vm_malloc_word(vm_t *vm, word_t n)
|
|
{
|
|
page_t *page = heap_allocate(&vm->heap, n * WORD_SIZE);
|
|
return vm_push_word(vm, DWORD((word_t)page));
|
|
}
|
|
|
|
err_t vm_mset_byte(vm_t *vm, word_t nth)
|
|
{
|
|
// Stack layout should be [BYTE, PTR]
|
|
data_t byte = {0};
|
|
err_t err = vm_pop_byte(vm, &byte);
|
|
if (err)
|
|
return err;
|
|
data_t ptr = {0};
|
|
err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
if (nth >= page->available)
|
|
return ERR_OUT_OF_BOUNDS;
|
|
page->data[nth] = byte.as_byte;
|
|
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_mset_hword(vm_t *vm, word_t nth)
|
|
{
|
|
// Stack layout should be [HWORD, PTR]
|
|
data_t byte = {0};
|
|
err_t err = vm_pop_hword(vm, &byte);
|
|
if (err)
|
|
return err;
|
|
data_t ptr = {0};
|
|
err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
if (nth >= (page->available / HWORD_SIZE))
|
|
return ERR_OUT_OF_BOUNDS;
|
|
((hword_t *)page->data)[nth] = byte.as_hword;
|
|
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_mset_word(vm_t *vm, word_t nth)
|
|
{
|
|
// Stack layout should be [WORD, PTR]
|
|
data_t byte = {0};
|
|
err_t err = vm_pop_word(vm, &byte);
|
|
if (err)
|
|
return err;
|
|
data_t ptr = {0};
|
|
err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
if (nth >= (page->available / WORD_SIZE))
|
|
return ERR_OUT_OF_BOUNDS;
|
|
((word_t *)page->data)[nth] = byte.as_word;
|
|
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_mget_byte(vm_t *vm, word_t n)
|
|
{
|
|
// Stack layout should be [PTR]
|
|
data_t ptr = {0};
|
|
err_t err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
if (n >= page->available)
|
|
return ERR_OUT_OF_BOUNDS;
|
|
return vm_push_byte(vm, DBYTE(page->data[n]));
|
|
}
|
|
|
|
err_t vm_mget_hword(vm_t *vm, word_t n)
|
|
{
|
|
// Stack layout should be [PTR]
|
|
data_t ptr = {0};
|
|
err_t err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
if (n >= (page->available / HWORD_SIZE))
|
|
return ERR_OUT_OF_BOUNDS;
|
|
return vm_push_hword(vm, DHWORD(((hword_t *)page->data)[n]));
|
|
}
|
|
|
|
err_t vm_mget_word(vm_t *vm, word_t n)
|
|
{
|
|
// Stack layout should be [PTR]
|
|
data_t ptr = {0};
|
|
err_t err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
printf("%lx\n", ptr.as_word);
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
if (n >= (page->available / WORD_SIZE))
|
|
return ERR_OUT_OF_BOUNDS;
|
|
return vm_push_word(vm, DWORD(((word_t *)page->data)[n]));
|
|
}
|
|
|
|
err_t vm_pop_byte(vm_t *vm, data_t *ret)
|
|
{
|
|
if (vm->stack.ptr == 0)
|
|
return ERR_STACK_UNDERFLOW;
|
|
*ret = DBYTE(vm->stack.data[--vm->stack.ptr]);
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_pop_hword(vm_t *vm, data_t *ret)
|
|
{
|
|
if (vm->stack.ptr < HWORD_SIZE)
|
|
return ERR_STACK_UNDERFLOW;
|
|
byte_t bytes[HWORD_SIZE] = {0};
|
|
for (size_t i = 0; i < HWORD_SIZE; ++i)
|
|
{
|
|
data_t b = {0};
|
|
vm_pop_byte(vm, &b);
|
|
bytes[i] = b.as_byte;
|
|
}
|
|
*ret = DHWORD(convert_bytes_to_hword(bytes));
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_pop_word(vm_t *vm, data_t *ret)
|
|
{
|
|
if (vm->stack.ptr < WORD_SIZE)
|
|
return ERR_STACK_UNDERFLOW;
|
|
byte_t bytes[WORD_SIZE] = {0};
|
|
for (size_t i = 0; i < WORD_SIZE; ++i)
|
|
{
|
|
data_t b = {0};
|
|
vm_pop_byte(vm, &b);
|
|
bytes[i] = b.as_byte;
|
|
}
|
|
*ret = DWORD(convert_bytes_to_word(bytes));
|
|
return ERR_OK;
|
|
}
|
|
|
|
// TODO: rename this to something more appropriate
|
|
#define VM_MEMORY_STACK_CONSTR(ACTION, TYPE) \
|
|
err_t vm_##ACTION##_stack_##TYPE(vm_t *vm) \
|
|
{ \
|
|
data_t n = {0}; \
|
|
err_t err = vm_pop_word(vm, &n); \
|
|
if (err) \
|
|
return err; \
|
|
return vm_##ACTION##_##TYPE(vm, n.as_word); \
|
|
}
|
|
|
|
VM_MEMORY_STACK_CONSTR(malloc, byte)
|
|
VM_MEMORY_STACK_CONSTR(malloc, hword)
|
|
VM_MEMORY_STACK_CONSTR(malloc, word)
|
|
VM_MEMORY_STACK_CONSTR(mset, byte)
|
|
VM_MEMORY_STACK_CONSTR(mset, hword)
|
|
VM_MEMORY_STACK_CONSTR(mset, word)
|
|
VM_MEMORY_STACK_CONSTR(mget, byte)
|
|
VM_MEMORY_STACK_CONSTR(mget, hword)
|
|
VM_MEMORY_STACK_CONSTR(mget, word)
|
|
|
|
err_t vm_mdelete(vm_t *vm)
|
|
{
|
|
data_t ptr = {0};
|
|
err_t err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
bool done = heap_free(&vm->heap, page);
|
|
if (!done)
|
|
return ERR_INVALID_PAGE_ADDRESS;
|
|
return ERR_OK;
|
|
}
|
|
|
|
err_t vm_msize(vm_t *vm)
|
|
{
|
|
data_t ptr = {0};
|
|
err_t err = vm_pop_word(vm, &ptr);
|
|
if (err)
|
|
return err;
|
|
page_t *page = (page_t *)ptr.as_word;
|
|
return vm_push_word(vm, DWORD(page->available));
|
|
}
|
|
|
|
// TODO: rename this to something more appropriate
|
|
#define VM_NOT_TYPE(TYPEL, TYPEU) \
|
|
err_t vm_not_##TYPEL(vm_t *vm) \
|
|
{ \
|
|
data_t a = {0}; \
|
|
err_t err = vm_pop_##TYPEL(vm, &a); \
|
|
if (err) \
|
|
return err; \
|
|
return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \
|
|
}
|
|
|
|
VM_NOT_TYPE(byte, BYTE)
|
|
VM_NOT_TYPE(hword, HWORD)
|
|
VM_NOT_TYPE(word, WORD)
|
|
|
|
// TODO: rename this to something more appropriate
|
|
#define VM_SAME_TYPE(COMPNAME, COMP, TYPEL, TYPEU) \
|
|
err_t vm_##COMPNAME##_##TYPEL(vm_t *vm) \
|
|
{ \
|
|
data_t a = {0}, b = {0}; \
|
|
err_t err = vm_pop_##TYPEL(vm, &a); \
|
|
if (err) \
|
|
return err; \
|
|
err = vm_pop_##TYPEL(vm, &b); \
|
|
if (err) \
|
|
return err; \
|
|
return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \
|
|
}
|
|
|
|
// TODO: rename this to something more appropriate
|
|
#define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL) \
|
|
err_t vm_##COMPNAME##_##GETL(vm_t *vm) \
|
|
{ \
|
|
data_t a = {0}, b = {0}; \
|
|
err_t err = vm_pop_##TYPEL(vm, &a); \
|
|
if (err) \
|
|
return err; \
|
|
err = vm_pop_##TYPEL(vm, &b); \
|
|
if (err) \
|
|
return err; \
|
|
return vm_push_byte(vm, DBYTE(b.as_##GETL COMP a.as_##GETL)); \
|
|
}
|
|
|
|
VM_SAME_TYPE(or, |, byte, BYTE)
|
|
VM_SAME_TYPE(or, |, hword, HWORD)
|
|
VM_SAME_TYPE(or, |, word, WORD)
|
|
VM_SAME_TYPE(and, &, byte, BYTE)
|
|
VM_SAME_TYPE(and, &, hword, HWORD)
|
|
VM_SAME_TYPE(and, &, word, WORD)
|
|
VM_SAME_TYPE(xor, ^, byte, BYTE)
|
|
VM_SAME_TYPE(xor, ^, hword, HWORD)
|
|
VM_SAME_TYPE(xor, ^, word, WORD)
|
|
|
|
VM_SAME_TYPE(plus, +, byte, BYTE)
|
|
VM_SAME_TYPE(plus, +, hword, HWORD)
|
|
VM_SAME_TYPE(plus, +, word, WORD)
|
|
|
|
VM_SAME_TYPE(sub, -, byte, BYTE)
|
|
VM_SAME_TYPE(sub, -, hword, HWORD)
|
|
VM_SAME_TYPE(sub, -, word, WORD)
|
|
|
|
VM_SAME_TYPE(mult, *, byte, BYTE)
|
|
VM_SAME_TYPE(mult, *, hword, HWORD)
|
|
VM_SAME_TYPE(mult, *, word, WORD)
|
|
|
|
VM_COMPARATOR_TYPE(eq, ==, byte, byte)
|
|
VM_COMPARATOR_TYPE(eq, ==, byte, char)
|
|
VM_COMPARATOR_TYPE(eq, ==, hword, hword)
|
|
VM_COMPARATOR_TYPE(eq, ==, hword, int)
|
|
VM_COMPARATOR_TYPE(eq, ==, word, word)
|
|
VM_COMPARATOR_TYPE(eq, ==, word, long)
|
|
|
|
VM_COMPARATOR_TYPE(lt, <, byte, byte)
|
|
VM_COMPARATOR_TYPE(lt, <, byte, char)
|
|
VM_COMPARATOR_TYPE(lt, <, hword, hword)
|
|
VM_COMPARATOR_TYPE(lt, <, hword, int)
|
|
VM_COMPARATOR_TYPE(lt, <, word, word)
|
|
VM_COMPARATOR_TYPE(lt, <, word, long)
|
|
|
|
VM_COMPARATOR_TYPE(lte, <=, byte, byte)
|
|
VM_COMPARATOR_TYPE(lte, <=, byte, char)
|
|
VM_COMPARATOR_TYPE(lte, <=, hword, hword)
|
|
VM_COMPARATOR_TYPE(lte, <=, hword, int)
|
|
VM_COMPARATOR_TYPE(lte, <=, word, word)
|
|
VM_COMPARATOR_TYPE(lte, <=, word, long)
|
|
|
|
VM_COMPARATOR_TYPE(gt, >, byte, byte)
|
|
VM_COMPARATOR_TYPE(gt, >, byte, char)
|
|
VM_COMPARATOR_TYPE(gt, >, hword, hword)
|
|
VM_COMPARATOR_TYPE(gt, >, hword, int)
|
|
VM_COMPARATOR_TYPE(gt, >, word, word)
|
|
VM_COMPARATOR_TYPE(gt, >, word, long)
|
|
|
|
VM_COMPARATOR_TYPE(gte, >=, byte, byte)
|
|
VM_COMPARATOR_TYPE(gte, >=, byte, char)
|
|
VM_COMPARATOR_TYPE(gte, >=, hword, hword)
|
|
VM_COMPARATOR_TYPE(gte, >=, hword, int)
|
|
VM_COMPARATOR_TYPE(gte, >=, word, word)
|
|
VM_COMPARATOR_TYPE(gte, >=, word, long)
|