This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
avm/vm/runtime.c

793 lines
23 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./runtime.h"
const char *err_as_cstr(err_t err)
{
switch (err)
{
case ERR_OK:
return "OK";
case ERR_STACK_UNDERFLOW:
return "STACK_UNDERFLOW";
case ERR_STACK_OVERFLOW:
return "STACK_OVERFLOW";
case ERR_CALL_STACK_UNDERFLOW:
return "CALL_STACK_UNDERFLOW";
case ERR_CALL_STACK_OVERFLOW:
return "CALL_STACK_OVERFLOW";
case ERR_INVALID_OPCODE:
return "INVALID_OPCODE";
case ERR_INVALID_REGISTER_BYTE:
return "INVALID_REGISTER_BYTE";
case ERR_INVALID_REGISTER_HWORD:
return "INVALID_REGISTER_HWORD";
case ERR_INVALID_REGISTER_WORD:
return "INVALID_REGISTER_WORD";
case ERR_INVALID_PROGRAM_ADDRESS:
return "INVALID_PROGRAM_ADDRESS";
case ERR_INVALID_PAGE_ADDRESS:
return "INVALID_PAGE_ADDRESS";
case ERR_OUT_OF_BOUNDS:
return "OUT_OF_BOUNDS";
case ERR_END_OF_PROGRAM:
return "END_OF_PROGRAM";
default:
return "";
}
}
static_assert(NUMBER_OF_OPCODES == 99, "vm_execute: Out of date");
static_assert(DATA_TYPE_NIL == -1 && DATA_TYPE_WORD == 2,
"Code using OPCODE_DATA_TYPE for quick same type opcode "
"conversion may be out of date.");
static_assert(OP_PRINT_LONG - OP_PRINT_BYTE == 5,
"Implementation of OP_PRINT is out of date");
err_t vm_execute(vm_t *vm)
{
struct Program *prog = &vm->program;
prog_t program_data = prog->data;
if (prog->ptr >= program_data.count)
return ERR_END_OF_PROGRAM;
inst_t instruction = program_data.instructions[prog->ptr];
if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
err_t err = PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
if (err)
return err;
prog->ptr++;
}
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MOV) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_DUP) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET))
{
err_t err =
WORD_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
if (err)
return err;
prog->ptr++;
}
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_POP))
{
// NOTE: We always use the first register to hold the result of
// this pop.
// Here we add OP_MOV_BYTE and the data_type_t of the opcode to
// get the right typed OP_MOV opcode.
opcode_t mov_opcode =
OPCODE_DATA_TYPE(instruction.opcode, OP_POP) + OP_MOV_BYTE;
err_t err = WORD_ROUTINES[mov_opcode](vm, 0);
if (err)
return err;
prog->ptr++;
}
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_NOT) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_OR) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_AND) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_XOR) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_EQ) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PLUS) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_SUB) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MULT) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC_STACK) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET_STACK) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET_STACK) ||
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_LT) ||
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_LTE) ||
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_GT) ||
SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_GTE) ||
instruction.opcode == OP_MDELETE || instruction.opcode == OP_MSIZE)
{
err_t err = STACK_ROUTINES[instruction.opcode](vm);
if (err)
return err;
prog->ptr++;
}
else if (instruction.opcode == OP_JUMP_ABS)
return vm_jump(vm, instruction.operand.as_word);
else if (instruction.opcode == OP_JUMP_STACK)
{
data_t ret = {0};
// Set prog->ptr to the word on top of the stack
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
return vm_jump(vm, ret.as_word);
}
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF))
{
data_t datum = {0};
// Here we add OP_POP_BYTE and the data_type_t of the opcode to
// get the right typed OP_POP opcode.
opcode_t pop_opcode =
OPCODE_DATA_TYPE(instruction.opcode, OP_JUMP_IF) + OP_POP_BYTE;
err_t err = POP_ROUTINES[pop_opcode](vm, &datum);
if (err)
return err;
// If datum != 0 then jump, else go to the next instruction
if (datum.as_word != 0)
return vm_jump(vm, instruction.operand.as_word);
else
++prog->ptr;
}
else if (instruction.opcode == OP_CALL)
{
if (vm->call_stack.ptr >= vm->call_stack.max)
return ERR_CALL_STACK_OVERFLOW;
vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1;
return vm_jump(vm, instruction.operand.as_word);
}
else if (instruction.opcode == OP_CALL_STACK)
{
if (vm->call_stack.ptr >= vm->call_stack.max)
return ERR_CALL_STACK_OVERFLOW;
vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1;
data_t ret = {0};
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
return vm_jump(vm, ret.as_word);
}
else if (instruction.opcode == OP_RET)
{
if (vm->call_stack.ptr == 0)
return ERR_CALL_STACK_UNDERFLOW;
word_t addr = vm->call_stack.address_pointers[vm->call_stack.ptr - 1];
err_t err = vm_jump(vm, vm->call_stack.address_pointers[addr]);
if (err)
return err;
--vm->call_stack.ptr;
}
else if (SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PRINT))
{
// Steps: 1) Pop the datum 2) Figure out the format string 3) Print
int type = OPCODE_DATA_TYPE(instruction.opcode, OP_PRINT);
// Here we figure out the opcode to pop the correct datum by
// integer division of OPCODE_DATA_TYPE() by 2 as OPCODE_DATA_TYPE
// is [0,5] which under integer division by 2 maps to [0,2] where:
// 0,1 -> 0; 2,3 -> 1; 4,5 -> 2. This is exactly the map we want
// (should be obvious).
opcode_t pop_opcode = OP_POP_BYTE + (type / 2);
data_t datum = {0};
err_t err = POP_ROUTINES[pop_opcode](vm, &datum);
if (err)
return err;
// TODO: Figure out a way to ensure the ordering of OP_PRINT_*
// this ordering is BYTE, CHAR, HWORD, INTEGER, WORD, LONG.
// Perhaps via static_assert
// Make a table of format strings for each data_type
const char *format_strings[] = {
"0x%x",
"%c",
#if PRINT_HEX == 1
"0x%X",
"0x%X",
"0x%lX",
"0x%dX",
#else
("%" PRIu32),
("%" PRId32),
("%" PRIu64),
("%" PRId64),
#endif
};
printf(format_strings[type], datum);
prog->ptr++;
}
else if (instruction.opcode == OP_HALT)
{
// Do nothing here. Should be caught by callers of vm_execute
}
else
return ERR_INVALID_OPCODE;
return ERR_OK;
}
err_t vm_execute_all(vm_t *vm)
{
struct Program *program = &vm->program;
const size_t count = program->data.count;
err_t err = ERR_OK;
// Setup the initial address according to the program
program->ptr = program->data.start_address;
#if VERBOSE >= 1
size_t cycles = 0;
#endif
#if VERBOSE >= 2
registers_t prev_registers = vm->registers;
size_t prev_sptr = 0;
size_t prev_pages = 0;
size_t prev_cptr = 0;
#endif
while (program->ptr < count &&
program->data.instructions[program->ptr].opcode != OP_HALT)
{
#if VERBOSE >= 2
fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
vm_print_program(vm, stdout);
fputs(
"----------------------------------------------------------------------"
"----------\n",
stdout);
if (prev_cptr != vm->call_stack.ptr)
{
vm_print_call_stack(vm, stdout);
prev_cptr = vm->call_stack.ptr;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
if (prev_pages != vm->heap.pages)
{
vm_print_heap(vm, stdout);
prev_pages = vm->heap.pages;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0)
{
vm_print_registers(vm, stdout);
prev_registers = vm->registers;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
if (prev_sptr != vm->stack.ptr)
{
vm_print_stack(vm, stdout);
prev_sptr = vm->stack.ptr;
fputs("------------------------------------------------------------------"
"----"
"----------\n",
stdout);
}
#endif
#if VERBOSE >= 1
++cycles;
#endif
err = vm_execute(vm);
if (err)
return err;
}
#if VERBOSE >= 1
fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n",
TERM_YELLOW, TERM_RESET, cycles);
vm_print_all(vm, stdout);
#endif
return err;
}
err_t vm_jump(vm_t *vm, word_t w)
{
if (w >= vm->program.data.count)
return ERR_INVALID_PROGRAM_ADDRESS;
vm->program.ptr = w;
return ERR_OK;
}
err_t vm_push_byte(vm_t *vm, data_t b)
{
if (vm->stack.ptr >= vm->stack.max)
return ERR_STACK_OVERFLOW;
vm->stack.data[vm->stack.ptr++] = b.as_byte;
return ERR_OK;
}
err_t vm_push_hword(vm_t *vm, data_t f)
{
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
return ERR_STACK_OVERFLOW;
byte_t bytes[HWORD_SIZE] = {0};
convert_hword_to_bytes(f.as_hword, bytes);
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
byte_t b = bytes[HWORD_SIZE - i - 1];
err_t err = vm_push_byte(vm, DBYTE(b));
if (err)
return err;
}
return ERR_OK;
}
err_t vm_push_word(vm_t *vm, data_t w)
{
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
return ERR_STACK_OVERFLOW;
byte_t bytes[WORD_SIZE] = {0};
convert_word_to_bytes(w.as_word, bytes);
for (size_t i = 0; i < WORD_SIZE; ++i)
{
byte_t b = bytes[WORD_SIZE - i - 1];
err_t err = vm_push_byte(vm, DBYTE(b));
if (err)
return err;
}
return ERR_OK;
}
err_t vm_push_byte_register(vm_t *vm, word_t reg)
{
if (reg > vm->registers.used)
return ERR_INVALID_REGISTER_BYTE;
// Interpret each word based register as 8 byte registers
byte_t b = vm->registers.data[reg];
return vm_push_byte(vm, DBYTE(b));
}
err_t vm_push_hword_register(vm_t *vm, word_t reg)
{
if (reg > (vm->registers.used / HWORD_SIZE))
return ERR_INVALID_REGISTER_HWORD;
// Interpret the bytes at point reg * HWORD_SIZE as an hword
hword_t hw = *(hword_t *)(vm->registers.data + (reg * HWORD_SIZE));
return vm_push_hword(vm, DHWORD(hw));
}
err_t vm_push_word_register(vm_t *vm, word_t reg)
{
if (reg > (vm->registers.used / WORD_SIZE))
return ERR_INVALID_REGISTER_WORD;
return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg)));
}
err_t vm_mov_byte(vm_t *vm, word_t reg)
{
if (reg >= vm->registers.used)
{
// Expand capacity
darr_ensure_capacity(&vm->registers, reg - vm->registers.used);
vm->registers.used = MAX(vm->registers.used, reg + 1);
}
data_t ret = {0};
err_t err = vm_pop_byte(vm, &ret);
if (err)
return err;
vm->registers.data[reg] = ret.as_byte;
return ERR_OK;
}
err_t vm_mov_hword(vm_t *vm, word_t reg)
{
if (reg >= (vm->registers.used / HWORD_SIZE))
{
// Expand capacity till we can ensure that this is a valid
// register to use
// Number of hwords needed ontop of what is allocated:
const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE));
// Number of bytes needed ontop of what is allocated
const size_t diff = (hwords + 1) * HWORD_SIZE;
darr_ensure_capacity(&vm->registers, diff);
vm->registers.used = MAX(vm->registers.used, (reg + 1) * HWORD_SIZE);
}
data_t ret = {0};
err_t err = vm_pop_hword(vm, &ret);
if (err)
return err;
// Here we treat vm->registers as a set of hwords
hword_t *hword_ptr = (hword_t *)(vm->registers.data + (reg * HWORD_SIZE));
*hword_ptr = ret.as_hword;
return ERR_OK;
}
err_t vm_mov_word(vm_t *vm, word_t reg)
{
if (reg >= (vm->registers.used / WORD_SIZE))
{
// Number of hwords needed ontop of what is allocated:
const size_t words = (reg - (vm->registers.used / WORD_SIZE));
// Number of bytes needed ontop of what is allocated
const size_t diff = (words + 1) * WORD_SIZE;
darr_ensure_capacity(&vm->registers, diff);
vm->registers.used = MAX(vm->registers.used, (reg + 1) * WORD_SIZE);
}
else if (vm->stack.ptr < WORD_SIZE)
return ERR_STACK_UNDERFLOW;
data_t ret = {0};
err_t err = vm_pop_word(vm, &ret);
if (err)
return err;
((word_t *)(vm->registers.data))[reg] = ret.as_word;
return ERR_OK;
}
err_t vm_dup_byte(vm_t *vm, word_t w)
{
if (vm->stack.ptr < w + 1)
return ERR_STACK_UNDERFLOW;
return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w]));
}
err_t vm_dup_hword(vm_t *vm, word_t w)
{
if (vm->stack.ptr < HWORD_SIZE * (w + 1))
return ERR_STACK_UNDERFLOW;
byte_t bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
bytes[HWORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i];
return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes)));
}
err_t vm_dup_word(vm_t *vm, word_t w)
{
if (vm->stack.ptr < WORD_SIZE * (w + 1))
return ERR_STACK_UNDERFLOW;
byte_t bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
bytes[WORD_SIZE - i - 1] =
vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i];
return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes)));
}
err_t vm_malloc_byte(vm_t *vm, word_t n)
{
page_t *page = heap_allocate(&vm->heap, n);
return vm_push_word(vm, DWORD((word_t)page));
}
err_t vm_malloc_hword(vm_t *vm, word_t n)
{
page_t *page = heap_allocate(&vm->heap, n * HWORD_SIZE);
return vm_push_word(vm, DWORD((word_t)page));
}
err_t vm_malloc_word(vm_t *vm, word_t n)
{
page_t *page = heap_allocate(&vm->heap, n * WORD_SIZE);
return vm_push_word(vm, DWORD((word_t)page));
}
err_t vm_mset_byte(vm_t *vm, word_t nth)
{
// Stack layout should be [BYTE, PTR]
data_t byte = {0};
err_t err = vm_pop_byte(vm, &byte);
if (err)
return err;
data_t ptr = {0};
err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
if (nth >= page->available)
return ERR_OUT_OF_BOUNDS;
page->data[nth] = byte.as_byte;
return ERR_OK;
}
err_t vm_mset_hword(vm_t *vm, word_t nth)
{
// Stack layout should be [HWORD, PTR]
data_t byte = {0};
err_t err = vm_pop_hword(vm, &byte);
if (err)
return err;
data_t ptr = {0};
err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
if (nth >= (page->available / HWORD_SIZE))
return ERR_OUT_OF_BOUNDS;
((hword_t *)page->data)[nth] = byte.as_hword;
return ERR_OK;
}
err_t vm_mset_word(vm_t *vm, word_t nth)
{
// Stack layout should be [WORD, PTR]
data_t byte = {0};
err_t err = vm_pop_word(vm, &byte);
if (err)
return err;
data_t ptr = {0};
err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
if (nth >= (page->available / WORD_SIZE))
return ERR_OUT_OF_BOUNDS;
((word_t *)page->data)[nth] = byte.as_word;
return ERR_OK;
}
err_t vm_mget_byte(vm_t *vm, word_t n)
{
// Stack layout should be [PTR]
data_t ptr = {0};
err_t err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
if (n >= page->available)
return ERR_OUT_OF_BOUNDS;
return vm_push_byte(vm, DBYTE(page->data[n]));
}
err_t vm_mget_hword(vm_t *vm, word_t n)
{
// Stack layout should be [PTR]
data_t ptr = {0};
err_t err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
if (n >= (page->available / HWORD_SIZE))
return ERR_OUT_OF_BOUNDS;
return vm_push_hword(vm, DHWORD(((hword_t *)page->data)[n]));
}
err_t vm_mget_word(vm_t *vm, word_t n)
{
// Stack layout should be [PTR]
data_t ptr = {0};
err_t err = vm_pop_word(vm, &ptr);
if (err)
return err;
printf("%lx\n", ptr.as_word);
page_t *page = (page_t *)ptr.as_word;
if (n >= (page->available / WORD_SIZE))
return ERR_OUT_OF_BOUNDS;
return vm_push_word(vm, DWORD(((word_t *)page->data)[n]));
}
err_t vm_pop_byte(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr == 0)
return ERR_STACK_UNDERFLOW;
*ret = DBYTE(vm->stack.data[--vm->stack.ptr]);
return ERR_OK;
}
err_t vm_pop_hword(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr < HWORD_SIZE)
return ERR_STACK_UNDERFLOW;
byte_t bytes[HWORD_SIZE] = {0};
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
data_t b = {0};
vm_pop_byte(vm, &b);
bytes[i] = b.as_byte;
}
*ret = DHWORD(convert_bytes_to_hword(bytes));
return ERR_OK;
}
err_t vm_pop_word(vm_t *vm, data_t *ret)
{
if (vm->stack.ptr < WORD_SIZE)
return ERR_STACK_UNDERFLOW;
byte_t bytes[WORD_SIZE] = {0};
for (size_t i = 0; i < WORD_SIZE; ++i)
{
data_t b = {0};
vm_pop_byte(vm, &b);
bytes[i] = b.as_byte;
}
*ret = DWORD(convert_bytes_to_word(bytes));
return ERR_OK;
}
// TODO: rename this to something more appropriate
#define VM_MEMORY_STACK_CONSTR(ACTION, TYPE) \
err_t vm_##ACTION##_stack_##TYPE(vm_t *vm) \
{ \
data_t n = {0}; \
err_t err = vm_pop_word(vm, &n); \
if (err) \
return err; \
return vm_##ACTION##_##TYPE(vm, n.as_word); \
}
VM_MEMORY_STACK_CONSTR(malloc, byte)
VM_MEMORY_STACK_CONSTR(malloc, hword)
VM_MEMORY_STACK_CONSTR(malloc, word)
VM_MEMORY_STACK_CONSTR(mset, byte)
VM_MEMORY_STACK_CONSTR(mset, hword)
VM_MEMORY_STACK_CONSTR(mset, word)
VM_MEMORY_STACK_CONSTR(mget, byte)
VM_MEMORY_STACK_CONSTR(mget, hword)
VM_MEMORY_STACK_CONSTR(mget, word)
err_t vm_mdelete(vm_t *vm)
{
data_t ptr = {0};
err_t err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
bool done = heap_free(&vm->heap, page);
if (!done)
return ERR_INVALID_PAGE_ADDRESS;
return ERR_OK;
}
err_t vm_msize(vm_t *vm)
{
data_t ptr = {0};
err_t err = vm_pop_word(vm, &ptr);
if (err)
return err;
page_t *page = (page_t *)ptr.as_word;
return vm_push_word(vm, DWORD(page->available));
}
// TODO: rename this to something more appropriate
#define VM_NOT_TYPE(TYPEL, TYPEU) \
err_t vm_not_##TYPEL(vm_t *vm) \
{ \
data_t a = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \
}
VM_NOT_TYPE(byte, BYTE)
VM_NOT_TYPE(hword, HWORD)
VM_NOT_TYPE(word, WORD)
// TODO: rename this to something more appropriate
#define VM_SAME_TYPE(COMPNAME, COMP, TYPEL, TYPEU) \
err_t vm_##COMPNAME##_##TYPEL(vm_t *vm) \
{ \
data_t a = {0}, b = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
err = vm_pop_##TYPEL(vm, &b); \
if (err) \
return err; \
return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \
}
// TODO: rename this to something more appropriate
#define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL) \
err_t vm_##COMPNAME##_##GETL(vm_t *vm) \
{ \
data_t a = {0}, b = {0}; \
err_t err = vm_pop_##TYPEL(vm, &a); \
if (err) \
return err; \
err = vm_pop_##TYPEL(vm, &b); \
if (err) \
return err; \
return vm_push_byte(vm, DBYTE(b.as_##GETL COMP a.as_##GETL)); \
}
VM_SAME_TYPE(or, |, byte, BYTE)
VM_SAME_TYPE(or, |, hword, HWORD)
VM_SAME_TYPE(or, |, word, WORD)
VM_SAME_TYPE(and, &, byte, BYTE)
VM_SAME_TYPE(and, &, hword, HWORD)
VM_SAME_TYPE(and, &, word, WORD)
VM_SAME_TYPE(xor, ^, byte, BYTE)
VM_SAME_TYPE(xor, ^, hword, HWORD)
VM_SAME_TYPE(xor, ^, word, WORD)
VM_SAME_TYPE(plus, +, byte, BYTE)
VM_SAME_TYPE(plus, +, hword, HWORD)
VM_SAME_TYPE(plus, +, word, WORD)
VM_SAME_TYPE(sub, -, byte, BYTE)
VM_SAME_TYPE(sub, -, hword, HWORD)
VM_SAME_TYPE(sub, -, word, WORD)
VM_SAME_TYPE(mult, *, byte, BYTE)
VM_SAME_TYPE(mult, *, hword, HWORD)
VM_SAME_TYPE(mult, *, word, WORD)
VM_COMPARATOR_TYPE(eq, ==, byte, byte)
VM_COMPARATOR_TYPE(eq, ==, byte, char)
VM_COMPARATOR_TYPE(eq, ==, hword, hword)
VM_COMPARATOR_TYPE(eq, ==, hword, int)
VM_COMPARATOR_TYPE(eq, ==, word, word)
VM_COMPARATOR_TYPE(eq, ==, word, long)
VM_COMPARATOR_TYPE(lt, <, byte, byte)
VM_COMPARATOR_TYPE(lt, <, byte, char)
VM_COMPARATOR_TYPE(lt, <, hword, hword)
VM_COMPARATOR_TYPE(lt, <, hword, int)
VM_COMPARATOR_TYPE(lt, <, word, word)
VM_COMPARATOR_TYPE(lt, <, word, long)
VM_COMPARATOR_TYPE(lte, <=, byte, byte)
VM_COMPARATOR_TYPE(lte, <=, byte, char)
VM_COMPARATOR_TYPE(lte, <=, hword, hword)
VM_COMPARATOR_TYPE(lte, <=, hword, int)
VM_COMPARATOR_TYPE(lte, <=, word, word)
VM_COMPARATOR_TYPE(lte, <=, word, long)
VM_COMPARATOR_TYPE(gt, >, byte, byte)
VM_COMPARATOR_TYPE(gt, >, byte, char)
VM_COMPARATOR_TYPE(gt, >, hword, hword)
VM_COMPARATOR_TYPE(gt, >, hword, int)
VM_COMPARATOR_TYPE(gt, >, word, word)
VM_COMPARATOR_TYPE(gt, >, word, long)
VM_COMPARATOR_TYPE(gte, >=, byte, byte)
VM_COMPARATOR_TYPE(gte, >=, byte, char)
VM_COMPARATOR_TYPE(gte, >=, hword, hword)
VM_COMPARATOR_TYPE(gte, >=, hword, int)
VM_COMPARATOR_TYPE(gte, >=, word, word)
VM_COMPARATOR_TYPE(gte, >=, word, long)