This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
avm/lib/inst.c
Aryadev Chavali 40907e5113 Reworked (de)serialising routines for instructions
No longer relying on darr_t or anything other than the C runtime and
aliases.  This means it should be *even easier* to target this via FFI
from other languages without having to initialise my custom made
structures!  Furthermore I've removed any form of allocation in the
library so FFI callers don't need to manage memory in any way.
Instead we rely on the caller allocating the correct amount of memory
for the functions to work, with basic error handling if that doesn't
happen.

In the case of inst_read_bytecode, error reporting occurs by making
the return of a function an integer.  If the integer is positive it is
the number of bytes read from the buffer.  If negative it flags a
possible error, which is a member of read_err_t.

prog_read_bytecode has been split into two functions: prog_read_header
and prog_read_instructions.  prog_read_instructions works under the
assumption that the program's header has been filled, e.g. via
prog_read_header.  prog_read_header returns 0 if there's not enough
space in the buffer or if the start_address is greater than the count.
prog_read_instructions returns a custom structure which contains an
byte position as well as an error enum, allowing for finer error
reporting.

In the case of inst_write_bytecode via the assumption that the caller
allocated the correct memory there is no need for error reporting.
For prog_write_bytecode if an error occurs due to

In the case of inst_read_bytecode we return the number
2024-04-27 17:43:06 +05:30

489 lines
13 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Implementation of bytecode for instructions
*/
#include "./inst.h"
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
const char *opcode_as_cstr(opcode_t code)
{
switch (code)
{
case OP_NOOP:
return "NOOP";
case OP_PUSH_BYTE:
return "PUSH_BYTE";
case OP_PUSH_WORD:
return "PUSH_WORD";
case OP_PUSH_HWORD:
return "PUSH_HWORD";
case OP_PUSH_REGISTER_BYTE:
return "PUSH_REGISTER_BYTE";
case OP_PUSH_REGISTER_WORD:
return "PUSH_REGISTER_WORD";
case OP_PUSH_REGISTER_HWORD:
return "PUSH_REGISTER_HWORD";
case OP_POP_BYTE:
return "POP_BYTE";
case OP_POP_WORD:
return "POP_WORD";
case OP_POP_HWORD:
return "POP_HWORD";
case OP_MOV_BYTE:
return "MOV_BYTE";
case OP_MOV_WORD:
return "MOV_WORD";
case OP_MOV_HWORD:
return "MOV_HWORD";
case OP_DUP_BYTE:
return "DUP_BYTE";
case OP_DUP_HWORD:
return "DUP_HWORD";
case OP_DUP_WORD:
return "DUP_WORD";
case OP_MALLOC_BYTE:
return "MALLOC_BYTE";
case OP_MALLOC_HWORD:
return "MALLOC_HWORD";
case OP_MALLOC_WORD:
return "MALLOC_WORD";
case OP_MALLOC_STACK_BYTE:
return "MALLOC_STACK_BYTE";
case OP_MALLOC_STACK_HWORD:
return "MALLOC_STACK_HWORD";
case OP_MALLOC_STACK_WORD:
return "MALLOC_STACK_WORD";
case OP_MSET_BYTE:
return "MSET_BYTE";
case OP_MSET_HWORD:
return "MSET_HWORD";
case OP_MSET_WORD:
return "MSET_WORD";
case OP_MSET_STACK_BYTE:
return "MSET_STACK_BYTE";
case OP_MSET_STACK_HWORD:
return "MSET_STACK_HWORD";
case OP_MSET_STACK_WORD:
return "MSET_STACK_WORD";
case OP_MGET_BYTE:
return "MGET_BYTE";
case OP_MGET_HWORD:
return "MGET_HWORD";
case OP_MGET_WORD:
return "MGET_WORD";
case OP_MGET_STACK_BYTE:
return "MGET_STACK_BYTE";
case OP_MGET_STACK_HWORD:
return "MGET_STACK_HWORD";
case OP_MGET_STACK_WORD:
return "MGET_STACK_WORD";
case OP_MDELETE:
return "MDELETE";
case OP_MSIZE:
return "MDELETE";
case OP_NOT_BYTE:
return "NOT_BYTE";
case OP_NOT_HWORD:
return "NOT_HWORD";
case OP_NOT_WORD:
return "NOT_WORD";
case OP_OR_BYTE:
return "OR_BYTE";
case OP_OR_HWORD:
return "OR_HWORD";
case OP_OR_WORD:
return "OR_WORD";
case OP_AND_BYTE:
return "AND_BYTE";
case OP_AND_HWORD:
return "AND_HWORD";
case OP_AND_WORD:
return "AND_WORD";
case OP_XOR_BYTE:
return "XOR_BYTE";
case OP_XOR_HWORD:
return "XOR_HWORD";
case OP_XOR_WORD:
return "XOR_WORD";
case OP_EQ_BYTE:
return "EQ_BYTE";
case OP_EQ_HWORD:
return "EQ_HWORD";
case OP_EQ_WORD:
return "EQ_WORD";
case OP_LT_BYTE:
return "LT_BYTE";
case OP_LT_CHAR:
return "LT_CHAR";
case OP_LT_HWORD:
return "LT_HWORD";
case OP_LT_INT:
return "LT_INT";
case OP_LT_LONG:
return "LT_LONG";
case OP_LT_WORD:
return "LT_WORD";
case OP_LTE_BYTE:
return "LTE_BYTE";
case OP_LTE_CHAR:
return "LTE_CHAR";
case OP_LTE_HWORD:
return "LTE_HWORD";
case OP_LTE_INT:
return "LTE_INT";
case OP_LTE_LONG:
return "LTE_LONG";
case OP_LTE_WORD:
return "LTE_WORD";
case OP_GT_BYTE:
return "GT_BYTE";
case OP_GT_CHAR:
return "GT_CHAR";
case OP_GT_HWORD:
return "GT_HWORD";
case OP_GT_INT:
return "GT_INT";
case OP_GT_LONG:
return "GT_LONG";
case OP_GT_WORD:
return "GT_WORD";
case OP_GTE_BYTE:
return "GTE_BYTE";
case OP_GTE_CHAR:
return "GTE_CHAR";
case OP_GTE_HWORD:
return "GTE_HWORD";
case OP_GTE_INT:
return "GTE_INT";
case OP_GTE_LONG:
return "GTE_LONG";
case OP_GTE_WORD:
return "GTE_WORD";
case OP_PLUS_BYTE:
return "PLUS_BYTE";
case OP_PLUS_HWORD:
return "PLUS_HWORD";
case OP_PLUS_WORD:
return "PLUS_WORD";
case OP_SUB_BYTE:
return "SUB_BYTE";
case OP_SUB_HWORD:
return "SUB_HWORD";
case OP_SUB_WORD:
return "SUB_WORD";
case OP_MULT_BYTE:
return "MULT_BYTE";
case OP_MULT_HWORD:
return "MULT_HWORD";
case OP_MULT_WORD:
return "MULT_WORD";
case OP_JUMP_ABS:
return "JUMP_ABS";
case OP_JUMP_STACK:
return "JUMP_STACK";
case OP_JUMP_IF_BYTE:
return "JUMP_IF_BYTE";
case OP_JUMP_IF_HWORD:
return "JUMP_IF_HWORD";
case OP_JUMP_IF_WORD:
return "JUMP_IF_WORD";
case OP_CALL:
return "CALL";
case OP_CALL_STACK:
return "CALL_STACK";
case OP_RET:
return "RET";
case OP_PRINT_CHAR:
return "PRINT_CHAR";
case OP_PRINT_BYTE:
return "PRINT_BYTE";
case OP_PRINT_INT:
return "PRINT_INT";
case OP_PRINT_HWORD:
return "PRINT_HWORD";
case OP_PRINT_LONG:
return "PRINT_LONG";
case OP_PRINT_WORD:
return "PRINT_WORD";
case OP_HALT:
return "HALT";
case NUMBER_OF_OPCODES:
return "";
}
return "";
}
void data_print(data_t datum, data_type_t type, FILE *fp)
{
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
fprintf(fp, "%X", datum.as_byte);
break;
case DATA_TYPE_HWORD:
fprintf(fp, "%X", datum.as_hword);
break;
case DATA_TYPE_WORD:
fprintf(fp, "%lX", datum.as_word);
break;
}
}
void inst_print(inst_t instruction, FILE *fp)
{
static_assert(NUMBER_OF_OPCODES == 98, "inst_print: Out of date");
fprintf(fp, "%s(", opcode_as_cstr(instruction.opcode));
if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
data_type_t type = (data_type_t)instruction.opcode;
fprintf(fp, "datum=0x");
data_print(instruction.operand, type, fp);
}
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MOV))
{
fprintf(fp, "reg=0x");
data_print(instruction.operand, DATA_TYPE_BYTE, fp);
}
else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_DUP) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET) ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET))
{
fprintf(fp, "n=%lu", instruction.operand.as_word);
}
else if (instruction.opcode == OP_JUMP_ABS ||
UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF) ||
instruction.opcode == OP_CALL)
{
fprintf(fp, "address=0x");
data_print(instruction.operand, DATA_TYPE_WORD, fp);
}
fprintf(fp, ")");
}
size_t opcode_bytecode_size(opcode_t opcode)
{
static_assert(NUMBER_OF_OPCODES == 98, "inst_bytecode_size: Out of date");
size_t size = 1; // for opcode
if (UNSIGNED_OPCODE_IS_TYPE(opcode, OP_PUSH))
{
if (opcode == OP_PUSH_BYTE)
++size;
else if (opcode == OP_PUSH_HWORD)
size += HWORD_SIZE;
else if (opcode == OP_PUSH_WORD)
size += WORD_SIZE;
}
else if (UNSIGNED_OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MOV) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_DUP) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MALLOC) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MSET) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MGET) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_JUMP_IF) ||
opcode == OP_JUMP_ABS || opcode == OP_CALL)
size += WORD_SIZE;
return size;
}
size_t inst_write_bytecode(inst_t inst, byte_t *bytes)
{
static_assert(NUMBER_OF_OPCODES == 98, "inst_write_bytecode: Out of date");
size_t written = 1;
bytes[0] = inst.opcode;
// Then append 0 or more operands
data_type_t to_append = DATA_TYPE_NIL;
if (UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_PUSH))
to_append = (data_type_t)inst.opcode;
else if (UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_PUSH_REGISTER) ||
UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_MOV) ||
UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_DUP) ||
UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_MALLOC) ||
UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_MSET) ||
UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_MGET) ||
UNSIGNED_OPCODE_IS_TYPE(inst.opcode, OP_JUMP_IF) ||
inst.opcode == OP_JUMP_ABS || inst.opcode == OP_CALL)
to_append = DATA_TYPE_WORD;
switch (to_append)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
bytes[1] = inst.operand.as_byte;
written += 1;
break;
case DATA_TYPE_HWORD:
convert_hword_to_bytes(inst.operand.as_hword, bytes + 1);
written += HWORD_SIZE;
break;
case DATA_TYPE_WORD:
convert_word_to_bytes(inst.operand.as_word, bytes + 1);
written += WORD_SIZE;
break;
}
return written;
}
bool read_type_from_darr(byte_t *bytes, size_t size, data_type_t type,
data_t *data)
{
data_t datum = {0};
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
if (size == 0)
return false;
datum = DBYTE(bytes[0]);
break;
case DATA_TYPE_HWORD:
if (size < HWORD_SIZE)
return false;
hword_t u = convert_bytes_to_hword(bytes);
datum = DHWORD(u);
break;
case DATA_TYPE_WORD:
if (size < WORD_SIZE)
return false;
word_t w = convert_bytes_to_word(bytes);
datum = DWORD(w);
break;
default:
return false;
}
*data = datum;
return true;
}
int inst_read_bytecode(inst_t *ptr, byte_t *bytes, size_t size_bytes)
{
static_assert(NUMBER_OF_OPCODES == 98, "inst_read_bytecode: Out of date");
opcode_t opcode = *(bytes++);
if (opcode > OP_HALT || opcode == NUMBER_OF_OPCODES || opcode < OP_NOOP)
return READ_ERR_INVALID_OPCODE;
inst_t inst = {opcode, {0}};
--size_bytes;
bool success = true;
// Read operands
if (UNSIGNED_OPCODE_IS_TYPE(opcode, OP_PUSH))
success = read_type_from_darr(bytes, size_bytes, (data_type_t)opcode,
&inst.operand);
// Read register (as a byte)
else if (UNSIGNED_OPCODE_IS_TYPE(opcode, OP_PUSH_REGISTER) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MOV) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_DUP) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MALLOC) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MSET) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_MGET) ||
UNSIGNED_OPCODE_IS_TYPE(opcode, OP_JUMP_IF) ||
opcode == OP_JUMP_ABS || opcode == OP_CALL)
success =
read_type_from_darr(bytes, size_bytes, DATA_TYPE_WORD, &inst.operand);
else
{
// Instruction doesn't take operands
}
if (success)
{
*ptr = inst;
return (int)(READ_ERR_END) - (int)(size_bytes);
}
else
return READ_ERR_OPERAND_NO_FIT;
}
static_assert(sizeof(prog_t) == (WORD_SIZE * 2) + sizeof(inst_t *),
"prog_{write|read}_* is out of date");
size_t prog_bytecode_size(prog_t program)
{
size_t size = WORD_SIZE * 2;
for (size_t i = 0; i < program.count; ++i)
size += opcode_bytecode_size(program.instructions[i].opcode);
return size;
}
size_t prog_write_bytecode(prog_t program, byte_t *bytes, size_t size_bytes)
{
if (size_bytes < PROG_HEADER_SIZE || prog_bytecode_size(program) < size_bytes)
return 0;
// Write program header i.e. the start and count
word_t start = word_htobc(program.start_address);
*(bytes++) = start;
word_t count = word_htobc(program.count);
*(bytes++) = count;
// Write instructions
size_t p_iter = 0, b_iter = PROG_HEADER_SIZE;
for (; p_iter < program.count && b_iter < size_bytes; ++p_iter)
{
size_t written =
inst_write_bytecode(program.instructions[p_iter], bytes + b_iter);
if (written == 0)
return 0;
b_iter += written;
}
return b_iter;
}
size_t prog_read_header(prog_t *prog, byte_t *bytes, size_t size_bytes)
{
if (size_bytes < PROG_HEADER_SIZE)
return 0;
prog->start_address = convert_bytes_to_word(bytes);
prog->count = convert_bytes_to_word(bytes + WORD_SIZE);
if (prog->start_address >= prog->count)
return 0;
return PROG_HEADER_SIZE;
}
read_err_prog_t prog_read_instructions(prog_t *program, size_t *size_bytes_read,
byte_t *bytes, size_t size_bytes)
{
// If no count then must be empty
if (program->count == 0)
return (read_err_prog_t){0};
size_t program_iter = 0, byte_iter = 0;
for (; program_iter < program->count && byte_iter < size_bytes;
++program_iter)
{
inst_t inst = {0};
int bytes_read =
inst_read_bytecode(&inst, bytes + byte_iter, size_bytes - byte_iter);
if (bytes_read < 0)
return (read_err_prog_t){bytes_read, byte_iter};
byte_iter += bytes_read;
}
if (program_iter < program->count)
return (read_err_prog_t){READ_ERR_EXPECTED_MORE, 0};
*size_bytes_read = byte_iter;
return (read_err_prog_t){0};
}