/* Copyright (C) 2023 Aryadev Chavali * You may distribute and modify this code under the terms of the * GPLv2 license. You should have received a copy of the GPLv2 * license with this file. If not, please write to: * aryadev@aryadevchavali.com. * Created: 2023-10-15 * Author: Aryadev Chavali * Description: Virtual machine implementation */ #include #include #include #include #include #include #include "./runtime.h" const char *err_as_cstr(err_t err) { switch (err) { case ERR_OK: return "OK"; case ERR_STACK_UNDERFLOW: return "STACK_UNDERFLOW"; case ERR_STACK_OVERFLOW: return "STACK_OVERFLOW"; case ERR_CALL_STACK_UNDERFLOW: return "CALL_STACK_UNDERFLOW"; case ERR_CALL_STACK_OVERFLOW: return "CALL_STACK_OVERFLOW"; case ERR_INVALID_OPCODE: return "INVALID_OPCODE"; case ERR_INVALID_REGISTER_BYTE: return "INVALID_REGISTER_BYTE"; case ERR_INVALID_REGISTER_HWORD: return "INVALID_REGISTER_HWORD"; case ERR_INVALID_REGISTER_WORD: return "INVALID_REGISTER_WORD"; case ERR_INVALID_PROGRAM_ADDRESS: return "INVALID_PROGRAM_ADDRESS"; case ERR_INVALID_PAGE_ADDRESS: return "INVALID_PAGE_ADDRESS"; case ERR_OUT_OF_BOUNDS: return "OUT_OF_BOUNDS"; case ERR_END_OF_PROGRAM: return "END_OF_PROGRAM"; default: return ""; } } static_assert(NUMBER_OF_OPCODES == 99, "vm_execute: Out of date"); static_assert(DATA_TYPE_NIL == -1 && DATA_TYPE_WORD == 2, "Code using OPCODE_DATA_TYPE for quick same type opcode " "conversion may be out of date."); static_assert(OP_PRINT_LONG - OP_PRINT_BYTE == 5, "Implementation of OP_PRINT is out of date"); err_t vm_execute(vm_t *vm) { struct Program *prog = &vm->program; prog_t program_data = prog->data; if (prog->ptr >= program_data.count) return ERR_END_OF_PROGRAM; inst_t instruction = program_data.instructions[prog->ptr]; if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH)) { err_t err = PUSH_ROUTINES[instruction.opcode](vm, instruction.operand); if (err) return err; prog->ptr++; } else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MOV) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_DUP) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET)) { err_t err = WORD_ROUTINES[instruction.opcode](vm, instruction.operand.as_word); if (err) return err; prog->ptr++; } else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_POP)) { // NOTE: We always use the first register to hold the result of // this pop. // Here we add OP_MOV_BYTE and the data_type_t of the opcode to // get the right typed OP_MOV opcode. opcode_t mov_opcode = OPCODE_DATA_TYPE(instruction.opcode, OP_POP) + OP_MOV_BYTE; err_t err = WORD_ROUTINES[mov_opcode](vm, 0); if (err) return err; prog->ptr++; } else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_NOT) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_OR) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_AND) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_XOR) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_EQ) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PLUS) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_SUB) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MULT) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MALLOC_STACK) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MSET_STACK) || UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_MGET_STACK) || SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_LT) || SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_LTE) || SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_GT) || SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_GTE) || instruction.opcode == OP_MDELETE || instruction.opcode == OP_MSIZE) { err_t err = STACK_ROUTINES[instruction.opcode](vm); if (err) return err; prog->ptr++; } else if (instruction.opcode == OP_JUMP_ABS) return vm_jump(vm, instruction.operand.as_word); else if (instruction.opcode == OP_JUMP_STACK) { data_t ret = {0}; // Set prog->ptr to the word on top of the stack err_t err = vm_pop_word(vm, &ret); if (err) return err; return vm_jump(vm, ret.as_word); } else if (UNSIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_JUMP_IF)) { data_t datum = {0}; // Here we add OP_POP_BYTE and the data_type_t of the opcode to // get the right typed OP_POP opcode. opcode_t pop_opcode = OPCODE_DATA_TYPE(instruction.opcode, OP_JUMP_IF) + OP_POP_BYTE; err_t err = POP_ROUTINES[pop_opcode](vm, &datum); if (err) return err; // If datum != 0 then jump, else go to the next instruction if (datum.as_word != 0) return vm_jump(vm, instruction.operand.as_word); else ++prog->ptr; } else if (instruction.opcode == OP_CALL) { if (vm->call_stack.ptr >= vm->call_stack.max) return ERR_CALL_STACK_OVERFLOW; vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1; return vm_jump(vm, instruction.operand.as_word); } else if (instruction.opcode == OP_CALL_STACK) { if (vm->call_stack.ptr >= vm->call_stack.max) return ERR_CALL_STACK_OVERFLOW; vm->call_stack.address_pointers[vm->call_stack.ptr++] = vm->program.ptr + 1; data_t ret = {0}; err_t err = vm_pop_word(vm, &ret); if (err) return err; return vm_jump(vm, ret.as_word); } else if (instruction.opcode == OP_RET) { if (vm->call_stack.ptr == 0) return ERR_CALL_STACK_UNDERFLOW; word_t addr = vm->call_stack.address_pointers[vm->call_stack.ptr - 1]; err_t err = vm_jump(vm, vm->call_stack.address_pointers[addr]); if (err) return err; --vm->call_stack.ptr; } else if (SIGNED_OPCODE_IS_TYPE(instruction.opcode, OP_PRINT)) { /* 1) Pop 2) Format 3) Print */ // 1) figure out what datum type to pop // type in [0, 5] representing [byte, char, hword, int, word, // long] int type = OPCODE_DATA_TYPE(instruction.opcode, OP_PRINT); /* Byte and Char -> POP_BYTE HWord and Int -> POP_HWORD Word and Long -> POP_WORD */ opcode_t pop_opcode = OP_POP_BYTE + (type / 2); data_t datum = {0}; err_t err = POP_ROUTINES[pop_opcode](vm, &datum); if (err) return err; // 2) create a format string for each datum type possible // TODO: Figure out a way to ensure the ordering of OP_PRINT_* is // exactly BYTE, CHAR, HWORD, INTEGER, WORD, LONG. Perhaps via // static_assert // lookup table const char *format_strings[] = { "0x%x", "%c", #if PRINT_HEX == 1 "0x%X", "0x%X", "0x%lX", "0x%dX", #else ("%" PRIu32), ("%" PRId32), ("%" PRIu64), ("%" PRId64), #endif }; // 3) Print datum using the format string given. printf(format_strings[type], datum); prog->ptr++; } else if (instruction.opcode == OP_HALT) { // Do nothing here. Should be caught by callers of vm_execute } else return ERR_INVALID_OPCODE; return ERR_OK; } err_t vm_execute_all(vm_t *vm) { struct Program *program = &vm->program; const size_t count = program->data.count; err_t err = ERR_OK; // Setup the initial address according to the program program->ptr = program->data.start_address; #if VERBOSE >= 1 size_t cycles = 0; #endif #if VERBOSE >= 2 registers_t prev_registers = vm->registers; size_t prev_sptr = 0; size_t prev_pages = 0; size_t prev_cptr = 0; #endif while (program->ptr < count && program->data.instructions[program->ptr].opcode != OP_HALT) { #if VERBOSE >= 2 fprintf(stdout, "[vm_execute_all]: Trace(Cycle %lu)\n", cycles); fputs( "----------------------------------------------------------------------" "----------\n", stdout); vm_print_program(vm, stdout); fputs( "----------------------------------------------------------------------" "----------\n", stdout); if (prev_cptr != vm->call_stack.ptr) { vm_print_call_stack(vm, stdout); prev_cptr = vm->call_stack.ptr; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (prev_pages != vm->heap.pages) { vm_print_heap(vm, stdout); prev_pages = vm->heap.pages; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (memcmp(&prev_registers, &vm->registers, sizeof(darr_t)) != 0) { vm_print_registers(vm, stdout); prev_registers = vm->registers; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } if (prev_sptr != vm->stack.ptr) { vm_print_stack(vm, stdout); prev_sptr = vm->stack.ptr; fputs("------------------------------------------------------------------" "----" "----------\n", stdout); } #endif #if VERBOSE >= 1 ++cycles; #endif err = vm_execute(vm); if (err) return err; } #if VERBOSE >= 1 fprintf(stdout, "[%svm_execute_all%s]: Final VM state(Cycle %lu)\n", TERM_YELLOW, TERM_RESET, cycles); vm_print_all(vm, stdout); #endif return err; } err_t vm_jump(vm_t *vm, word_t w) { if (w >= vm->program.data.count) return ERR_INVALID_PROGRAM_ADDRESS; vm->program.ptr = w; return ERR_OK; } err_t vm_push_byte(vm_t *vm, data_t b) { if (vm->stack.ptr >= vm->stack.max) return ERR_STACK_OVERFLOW; vm->stack.data[vm->stack.ptr++] = b.as_byte; return ERR_OK; } err_t vm_push_hword(vm_t *vm, data_t f) { if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max) return ERR_STACK_OVERFLOW; byte_t bytes[HWORD_SIZE] = {0}; convert_hword_to_bytes(f.as_hword, bytes); for (size_t i = 0; i < HWORD_SIZE; ++i) { byte_t b = bytes[HWORD_SIZE - i - 1]; err_t err = vm_push_byte(vm, DBYTE(b)); if (err) return err; } return ERR_OK; } err_t vm_push_word(vm_t *vm, data_t w) { if (vm->stack.ptr + WORD_SIZE >= vm->stack.max) return ERR_STACK_OVERFLOW; byte_t bytes[WORD_SIZE] = {0}; convert_word_to_bytes(w.as_word, bytes); for (size_t i = 0; i < WORD_SIZE; ++i) { byte_t b = bytes[WORD_SIZE - i - 1]; err_t err = vm_push_byte(vm, DBYTE(b)); if (err) return err; } return ERR_OK; } err_t vm_push_byte_register(vm_t *vm, word_t reg) { if (reg > vm->registers.used) return ERR_INVALID_REGISTER_BYTE; // Interpret each word based register as 8 byte registers byte_t b = vm->registers.data[reg]; return vm_push_byte(vm, DBYTE(b)); } err_t vm_push_hword_register(vm_t *vm, word_t reg) { if (reg > (vm->registers.used / HWORD_SIZE)) return ERR_INVALID_REGISTER_HWORD; // Interpret the bytes at point reg * HWORD_SIZE as an hword hword_t hw = *(hword_t *)(vm->registers.data + (reg * HWORD_SIZE)); return vm_push_hword(vm, DHWORD(hw)); } err_t vm_push_word_register(vm_t *vm, word_t reg) { if (reg > (vm->registers.used / WORD_SIZE)) return ERR_INVALID_REGISTER_WORD; return vm_push_word(vm, DWORD(VM_NTH_REGISTER(vm->registers, reg))); } err_t vm_mov_byte(vm_t *vm, word_t reg) { if (reg >= vm->registers.used) { // Expand capacity darr_ensure_capacity(&vm->registers, reg - vm->registers.used); vm->registers.used = MAX(vm->registers.used, reg + 1); } data_t ret = {0}; err_t err = vm_pop_byte(vm, &ret); if (err) return err; vm->registers.data[reg] = ret.as_byte; return ERR_OK; } err_t vm_mov_hword(vm_t *vm, word_t reg) { if (reg >= (vm->registers.used / HWORD_SIZE)) { // Expand capacity till we can ensure that this is a valid // register to use // Number of hwords needed ontop of what is allocated: const size_t hwords = (reg - (vm->registers.used / HWORD_SIZE)); // Number of bytes needed ontop of what is allocated const size_t diff = (hwords + 1) * HWORD_SIZE; darr_ensure_capacity(&vm->registers, diff); vm->registers.used = MAX(vm->registers.used, (reg + 1) * HWORD_SIZE); } data_t ret = {0}; err_t err = vm_pop_hword(vm, &ret); if (err) return err; // Here we treat vm->registers as a set of hwords hword_t *hword_ptr = (hword_t *)(vm->registers.data + (reg * HWORD_SIZE)); *hword_ptr = ret.as_hword; return ERR_OK; } err_t vm_mov_word(vm_t *vm, word_t reg) { if (reg >= (vm->registers.used / WORD_SIZE)) { // Number of hwords needed ontop of what is allocated: const size_t words = (reg - (vm->registers.used / WORD_SIZE)); // Number of bytes needed ontop of what is allocated const size_t diff = (words + 1) * WORD_SIZE; darr_ensure_capacity(&vm->registers, diff); vm->registers.used = MAX(vm->registers.used, (reg + 1) * WORD_SIZE); } else if (vm->stack.ptr < WORD_SIZE) return ERR_STACK_UNDERFLOW; data_t ret = {0}; err_t err = vm_pop_word(vm, &ret); if (err) return err; ((word_t *)(vm->registers.data))[reg] = ret.as_word; return ERR_OK; } err_t vm_dup_byte(vm_t *vm, word_t w) { if (vm->stack.ptr < w + 1) return ERR_STACK_UNDERFLOW; return vm_push_byte(vm, DBYTE(vm->stack.data[vm->stack.ptr - 1 - w])); } err_t vm_dup_hword(vm_t *vm, word_t w) { if (vm->stack.ptr < HWORD_SIZE * (w + 1)) return ERR_STACK_UNDERFLOW; byte_t bytes[HWORD_SIZE] = {0}; for (size_t i = 0; i < HWORD_SIZE; ++i) bytes[HWORD_SIZE - i - 1] = vm->stack.data[vm->stack.ptr - (HWORD_SIZE * (w + 1)) + i]; return vm_push_hword(vm, DHWORD(convert_bytes_to_hword(bytes))); } err_t vm_dup_word(vm_t *vm, word_t w) { if (vm->stack.ptr < WORD_SIZE * (w + 1)) return ERR_STACK_UNDERFLOW; byte_t bytes[WORD_SIZE] = {0}; for (size_t i = 0; i < WORD_SIZE; ++i) bytes[WORD_SIZE - i - 1] = vm->stack.data[vm->stack.ptr - (WORD_SIZE * (w + 1)) + i]; return vm_push_word(vm, DWORD(convert_bytes_to_word(bytes))); } err_t vm_malloc_byte(vm_t *vm, word_t n) { page_t *page = heap_allocate(&vm->heap, n); return vm_push_word(vm, DWORD((word_t)page)); } err_t vm_malloc_hword(vm_t *vm, word_t n) { page_t *page = heap_allocate(&vm->heap, n * HWORD_SIZE); return vm_push_word(vm, DWORD((word_t)page)); } err_t vm_malloc_word(vm_t *vm, word_t n) { page_t *page = heap_allocate(&vm->heap, n * WORD_SIZE); return vm_push_word(vm, DWORD((word_t)page)); } err_t vm_mset_byte(vm_t *vm, word_t nth) { // Stack layout should be [BYTE, PTR] data_t byte = {0}; err_t err = vm_pop_byte(vm, &byte); if (err) return err; data_t ptr = {0}; err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (nth >= page->available) return ERR_OUT_OF_BOUNDS; page->data[nth] = byte.as_byte; return ERR_OK; } err_t vm_mset_hword(vm_t *vm, word_t nth) { // Stack layout should be [HWORD, PTR] data_t byte = {0}; err_t err = vm_pop_hword(vm, &byte); if (err) return err; data_t ptr = {0}; err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (nth >= (page->available / HWORD_SIZE)) return ERR_OUT_OF_BOUNDS; ((hword_t *)page->data)[nth] = byte.as_hword; return ERR_OK; } err_t vm_mset_word(vm_t *vm, word_t nth) { // Stack layout should be [WORD, PTR] data_t byte = {0}; err_t err = vm_pop_word(vm, &byte); if (err) return err; data_t ptr = {0}; err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (nth >= (page->available / WORD_SIZE)) return ERR_OUT_OF_BOUNDS; ((word_t *)page->data)[nth] = byte.as_word; return ERR_OK; } err_t vm_mget_byte(vm_t *vm, word_t n) { // Stack layout should be [PTR] data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (n >= page->available) return ERR_OUT_OF_BOUNDS; return vm_push_byte(vm, DBYTE(page->data[n])); } err_t vm_mget_hword(vm_t *vm, word_t n) { // Stack layout should be [PTR] data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; if (n >= (page->available / HWORD_SIZE)) return ERR_OUT_OF_BOUNDS; return vm_push_hword(vm, DHWORD(((hword_t *)page->data)[n])); } err_t vm_mget_word(vm_t *vm, word_t n) { // Stack layout should be [PTR] data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; printf("%lx\n", ptr.as_word); page_t *page = (page_t *)ptr.as_word; if (n >= (page->available / WORD_SIZE)) return ERR_OUT_OF_BOUNDS; return vm_push_word(vm, DWORD(((word_t *)page->data)[n])); } err_t vm_pop_byte(vm_t *vm, data_t *ret) { if (vm->stack.ptr == 0) return ERR_STACK_UNDERFLOW; *ret = DBYTE(vm->stack.data[--vm->stack.ptr]); return ERR_OK; } err_t vm_pop_hword(vm_t *vm, data_t *ret) { if (vm->stack.ptr < HWORD_SIZE) return ERR_STACK_UNDERFLOW; byte_t bytes[HWORD_SIZE] = {0}; for (size_t i = 0; i < HWORD_SIZE; ++i) { data_t b = {0}; vm_pop_byte(vm, &b); bytes[i] = b.as_byte; } *ret = DHWORD(convert_bytes_to_hword(bytes)); return ERR_OK; } err_t vm_pop_word(vm_t *vm, data_t *ret) { if (vm->stack.ptr < WORD_SIZE) return ERR_STACK_UNDERFLOW; byte_t bytes[WORD_SIZE] = {0}; for (size_t i = 0; i < WORD_SIZE; ++i) { data_t b = {0}; vm_pop_byte(vm, &b); bytes[i] = b.as_byte; } *ret = DWORD(convert_bytes_to_word(bytes)); return ERR_OK; } // TODO: rename this to something more appropriate #define VM_MEMORY_STACK_CONSTR(ACTION, TYPE) \ err_t vm_##ACTION##_stack_##TYPE(vm_t *vm) \ { \ data_t n = {0}; \ err_t err = vm_pop_word(vm, &n); \ if (err) \ return err; \ return vm_##ACTION##_##TYPE(vm, n.as_word); \ } VM_MEMORY_STACK_CONSTR(malloc, byte) VM_MEMORY_STACK_CONSTR(malloc, hword) VM_MEMORY_STACK_CONSTR(malloc, word) VM_MEMORY_STACK_CONSTR(mset, byte) VM_MEMORY_STACK_CONSTR(mset, hword) VM_MEMORY_STACK_CONSTR(mset, word) VM_MEMORY_STACK_CONSTR(mget, byte) VM_MEMORY_STACK_CONSTR(mget, hword) VM_MEMORY_STACK_CONSTR(mget, word) err_t vm_mdelete(vm_t *vm) { data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; bool done = heap_free(&vm->heap, page); if (!done) return ERR_INVALID_PAGE_ADDRESS; return ERR_OK; } err_t vm_msize(vm_t *vm) { data_t ptr = {0}; err_t err = vm_pop_word(vm, &ptr); if (err) return err; page_t *page = (page_t *)ptr.as_word; return vm_push_word(vm, DWORD(page->available)); } // TODO: rename this to something more appropriate #define VM_NOT_TYPE(TYPEL, TYPEU) \ err_t vm_not_##TYPEL(vm_t *vm) \ { \ data_t a = {0}; \ err_t err = vm_pop_##TYPEL(vm, &a); \ if (err) \ return err; \ return vm_push_##TYPEL(vm, D##TYPEU(!a.as_##TYPEL)); \ } VM_NOT_TYPE(byte, BYTE) VM_NOT_TYPE(hword, HWORD) VM_NOT_TYPE(word, WORD) // TODO: rename this to something more appropriate #define VM_SAME_TYPE(COMPNAME, COMP, TYPEL, TYPEU) \ err_t vm_##COMPNAME##_##TYPEL(vm_t *vm) \ { \ data_t a = {0}, b = {0}; \ err_t err = vm_pop_##TYPEL(vm, &a); \ if (err) \ return err; \ err = vm_pop_##TYPEL(vm, &b); \ if (err) \ return err; \ return vm_push_##TYPEL(vm, D##TYPEU(a.as_##TYPEL COMP b.as_##TYPEL)); \ } // TODO: rename this to something more appropriate #define VM_COMPARATOR_TYPE(COMPNAME, COMP, TYPEL, GETL) \ err_t vm_##COMPNAME##_##GETL(vm_t *vm) \ { \ data_t a = {0}, b = {0}; \ err_t err = vm_pop_##TYPEL(vm, &a); \ if (err) \ return err; \ err = vm_pop_##TYPEL(vm, &b); \ if (err) \ return err; \ return vm_push_byte(vm, DBYTE(b.as_##GETL COMP a.as_##GETL)); \ } VM_SAME_TYPE(or, |, byte, BYTE) VM_SAME_TYPE(or, |, hword, HWORD) VM_SAME_TYPE(or, |, word, WORD) VM_SAME_TYPE(and, &, byte, BYTE) VM_SAME_TYPE(and, &, hword, HWORD) VM_SAME_TYPE(and, &, word, WORD) VM_SAME_TYPE(xor, ^, byte, BYTE) VM_SAME_TYPE(xor, ^, hword, HWORD) VM_SAME_TYPE(xor, ^, word, WORD) VM_SAME_TYPE(plus, +, byte, BYTE) VM_SAME_TYPE(plus, +, hword, HWORD) VM_SAME_TYPE(plus, +, word, WORD) VM_SAME_TYPE(sub, -, byte, BYTE) VM_SAME_TYPE(sub, -, hword, HWORD) VM_SAME_TYPE(sub, -, word, WORD) VM_SAME_TYPE(mult, *, byte, BYTE) VM_SAME_TYPE(mult, *, hword, HWORD) VM_SAME_TYPE(mult, *, word, WORD) VM_COMPARATOR_TYPE(eq, ==, byte, byte) VM_COMPARATOR_TYPE(eq, ==, byte, char) VM_COMPARATOR_TYPE(eq, ==, hword, hword) VM_COMPARATOR_TYPE(eq, ==, hword, int) VM_COMPARATOR_TYPE(eq, ==, word, word) VM_COMPARATOR_TYPE(eq, ==, word, long) VM_COMPARATOR_TYPE(lt, <, byte, byte) VM_COMPARATOR_TYPE(lt, <, byte, char) VM_COMPARATOR_TYPE(lt, <, hword, hword) VM_COMPARATOR_TYPE(lt, <, hword, int) VM_COMPARATOR_TYPE(lt, <, word, word) VM_COMPARATOR_TYPE(lt, <, word, long) VM_COMPARATOR_TYPE(lte, <=, byte, byte) VM_COMPARATOR_TYPE(lte, <=, byte, char) VM_COMPARATOR_TYPE(lte, <=, hword, hword) VM_COMPARATOR_TYPE(lte, <=, hword, int) VM_COMPARATOR_TYPE(lte, <=, word, word) VM_COMPARATOR_TYPE(lte, <=, word, long) VM_COMPARATOR_TYPE(gt, >, byte, byte) VM_COMPARATOR_TYPE(gt, >, byte, char) VM_COMPARATOR_TYPE(gt, >, hword, hword) VM_COMPARATOR_TYPE(gt, >, hword, int) VM_COMPARATOR_TYPE(gt, >, word, word) VM_COMPARATOR_TYPE(gt, >, word, long) VM_COMPARATOR_TYPE(gte, >=, byte, byte) VM_COMPARATOR_TYPE(gte, >=, byte, char) VM_COMPARATOR_TYPE(gte, >=, hword, hword) VM_COMPARATOR_TYPE(gte, >=, hword, int) VM_COMPARATOR_TYPE(gte, >=, word, word) VM_COMPARATOR_TYPE(gte, >=, word, long)