This repository has been archived on 2025-11-10. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
aal/src/runtime.c
2023-10-22 18:07:41 +01:00

565 lines
14 KiB
C

/* Copyright (C) 2023 Aryadev Chavali
* You may distribute and modify this code under the terms of the
* GPLv2 license. You should have received a copy of the GPLv2
* license with this file. If not, please write to:
* aryadev@aryadevchavali.com.
* Created: 2023-10-15
* Author: Aryadev Chavali
* Description: Virtual machine implementation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./runtime.h"
void vm_execute(vm_t *vm)
{
struct Program *prog = &vm->program;
if (prog->ptr >= prog->max)
// TODO: Error (Went past end of program)
return;
inst_t instruction = prog->instructions[prog->ptr];
if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH))
{
PUSH_ROUTINES[instruction.opcode](vm, instruction.operand);
vm->registers.ret = instruction.operand.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_PUSH_REGISTER))
{
PUSH_REG_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
vm->registers.ret = instruction.operand.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_POP))
{
// NOTE: We use the first register to hold the result of this pop
data_type_t type = OPCODE_DATA_TYPE(instruction.opcode, OP_POP);
data_t datum = vm_peek(vm, type);
switch (type)
{
case DATA_TYPE_NIL:
break;
case DATA_TYPE_BYTE:
vm_mov_byte(vm, (VM_REGISTERS * 8) - 1);
break;
case DATA_TYPE_HWORD:
vm_mov_hword(vm, (VM_REGISTERS * 4) - 1);
break;
case DATA_TYPE_WORD:
vm_mov_hword(vm, VM_REGISTERS - 1);
break;
}
vm->registers.ret = datum.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_MOV))
{
data_t d =
MOV_ROUTINES[instruction.opcode](vm, instruction.operand.as_word);
vm->registers.ret = d.as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_NOT))
{
NOT_ROUTINES[instruction.opcode](vm);
vm->registers.ret =
vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_NOT)).as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_OR))
{
OR_ROUTINES[instruction.opcode](vm);
vm->registers.ret =
vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_OR)).as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_AND))
{
AND_ROUTINES[instruction.opcode](vm);
vm->registers.ret =
vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_AND)).as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_XOR))
{
XOR_ROUTINES[instruction.opcode](vm);
vm->registers.ret =
vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_XOR)).as_word;
prog->ptr++;
}
else if (OPCODE_IS_TYPE(instruction.opcode, OP_EQ))
{
EQ_ROUTINES[instruction.opcode](vm);
vm->registers.ret =
vm_peek(vm, OPCODE_DATA_TYPE(instruction.opcode, OP_EQ)).as_word;
prog->ptr++;
}
else if (instruction.opcode == OP_HALT)
{
// Do nothing here. Should be caught by callers of vm_execute
}
else
{
// TODO: Error (Unknown opcode)
return;
}
}
void vm_execute_all(vm_t *vm)
{
struct Program *program = &vm->program;
while (program->instructions[program->ptr].opcode != OP_HALT)
vm_execute(vm);
}
void vm_load_stack(vm_t *vm, byte *bytes, size_t size)
{
vm->stack.data = bytes;
vm->stack.max = size;
vm->stack.ptr = 0;
}
void vm_load_program(vm_t *vm, inst_t *instructions, size_t size)
{
vm->program.instructions = instructions;
vm->program.max = size;
vm->program.ptr = 0;
}
void vm_print_registers(vm_t *vm, FILE *fp)
{
struct Registers reg = vm->registers;
fprintf(fp, "Registers.ret = 0x%lX\n", reg.ret);
fprintf(fp, "Registers.reg = [");
for (size_t i = 0; i < VM_REGISTERS; ++i)
{
fprintf(fp, "{%lu:%lX}", i, reg.reg[i]);
if (i != VM_REGISTERS - 1)
fprintf(fp, ", ");
}
fprintf(fp, "]\n");
}
void vm_print_stack(vm_t *vm, FILE *fp)
{
struct Stack stack = vm->stack;
fprintf(fp, "Stack.max = %lu\nStack.ptr = %lu\nStack.data = [", stack.max,
stack.ptr);
if (stack.ptr == 0)
{
fprintf(fp, "]\n");
return;
}
printf("\n");
for (size_t i = stack.ptr; i > 0; --i)
{
byte b = stack.data[i - 1];
fprintf(fp, "\t%lu: %X", stack.ptr - i, b);
if (i != 1)
fprintf(fp, ", ");
fprintf(fp, "\n");
}
fprintf(fp, "]\n");
}
void vm_print_program(vm_t *vm, FILE *fp)
{
struct Program program = vm->program;
fprintf(fp,
"Program.max = %lu\nProgram.ptr = "
"%lu\nProgram.instructions = [\n",
program.max, program.ptr);
size_t beg = 0;
if (program.ptr >= VM_PRINT_PROGRAM_EXCERPT)
{
fprintf(fp, "\t...\n");
beg = program.ptr - VM_PRINT_PROGRAM_EXCERPT;
}
else
beg = 0;
size_t end = MIN(program.ptr + VM_PRINT_PROGRAM_EXCERPT, program.max);
for (size_t i = beg; i < end; ++i)
{
fprintf(fp, "\t%lu: ", i);
inst_print(program.instructions[i], stdout);
if (i == program.ptr)
fprintf(fp, " <---");
fprintf(fp, "\n");
}
if (end != program.max)
fprintf(fp, "\t...\n");
fprintf(fp, "]\n");
}
void vm_print_all(vm_t *vm, FILE *fp)
{
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_registers(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_stack(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
vm_print_program(vm, fp);
fputs("----------------------------------------------------------------------"
"----------\n",
fp);
}
data_t vm_peek(vm_t *vm, data_type_t type)
{
switch (type)
{
case DATA_TYPE_NIL:
return DBYTE(0);
break;
case DATA_TYPE_BYTE:
if (vm->stack.ptr == 0)
return DBYTE(0);
return DBYTE(vm->stack.data[vm->stack.ptr - 1]);
break;
case DATA_TYPE_HWORD:
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DHWORD(0);
hword h = 0;
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
byte b = vm->stack.data[vm->stack.ptr - 1 - i];
h = h | (((word)b) << (i * 8));
}
return DWORD(h);
break;
case DATA_TYPE_WORD:
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DWORD(0);
word w = 0;
for (size_t i = 0; i < WORD_SIZE; ++i)
{
byte b = vm->stack.data[vm->stack.ptr - 1 - i];
w = w | (((word)b) << (i * 8));
}
return DWORD(w);
break;
default:
return DBYTE(0);
break;
}
}
void vm_push_byte(vm_t *vm, data_t b)
{
if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm->stack.data[vm->stack.ptr++] = b.as_byte;
}
void vm_push_hword(vm_t *vm, data_t f)
{
if (vm->stack.ptr + HWORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
for (size_t i = 32; i > 0; i -= 8)
{
const word mask = ((word)0b11111111) << (i - 8);
byte b = (f.as_hword & mask) >> (i - 8);
vm_push_byte(vm, DBYTE(b));
}
}
void vm_push_word(vm_t *vm, data_t w)
{
if (vm->stack.ptr + WORD_SIZE >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// By default store in big endian
for (size_t i = 64; i > 0; i -= 8)
{
const word mask = ((word)0b11111111) << (i - 8);
byte b = (w.as_word & mask) >> (i - 8);
vm_push_byte(vm, DBYTE(b));
}
}
#define WORD_NTH_BYTE(WORD, N) (((WORD) >> ((N)*8)) & 0b11111111)
#define WORD_NTH_HWORD(WORD, N) \
(((WORD) >> ((N)*2)) & 0b11111111111111111111111111111111)
void vm_push_byte_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS * 8)
// TODO: Error (reg is not a valid byte register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// Interpret each word based register as 8 byte registers
byte b = WORD_NTH_BYTE(vm->registers.reg[reg / 8], reg % 8);
vm_push_byte(vm, DBYTE(b));
}
void vm_push_hword_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS * 2)
// TODO: Error (reg is not a valid hword register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
// Interpret each word based register as 2 hword registers
hword hw = WORD_NTH_HWORD(vm->registers.reg[reg / 2], reg % 2);
vm_push_hword(vm, DHWORD(hw));
}
void vm_push_word_register(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid word register)
return;
else if (vm->stack.ptr >= vm->stack.max)
// TODO: Error STACK_OVERFLOW
return;
vm_push_word(vm, DWORD(vm->registers.reg[reg]));
}
data_t vm_mov_byte(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid byte register)
return DBYTE(0);
else if (vm->stack.ptr == 0)
// TODO: Error (STACK UNDERFLOW)
return DBYTE(0);
data_t ret = vm_pop_byte(vm);
word *reg_ptr = &vm->registers.reg[reg / 8];
*reg_ptr = (*reg_ptr) | (ret.as_word << ((reg % 8) * 8));
return ret;
}
data_t vm_mov_hword(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid hword register)
return DHWORD(0);
else if (vm->stack.ptr < sizeof(f64))
// TODO: Error (STACK UNDERFLOW)
return DHWORD(0);
data_t ret = vm_pop_hword(vm);
word *reg_ptr = &vm->registers.reg[reg / 2];
*reg_ptr = (*reg_ptr) | (ret.as_word << ((reg % 2) * 2));
return ret;
}
data_t vm_mov_word(vm_t *vm, byte reg)
{
if (reg >= VM_REGISTERS)
// TODO: Error (reg is not a valid word register)
return DWORD(0);
else if (vm->stack.ptr < sizeof(word))
// TODO: Error (STACK UNDERFLOW)
return DWORD(0);
data_t ret = vm_pop_word(vm);
vm->registers.reg[reg] = ret.as_word;
return ret;
}
data_t vm_pop_byte(vm_t *vm)
{
if (vm->stack.ptr == 0)
// TODO: Error STACK_UNDERFLOW
return DBYTE(0);
return DBYTE(vm->stack.data[--vm->stack.ptr]);
}
data_t vm_pop_hword(vm_t *vm)
{
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DHWORD(0);
hword h = 0;
for (size_t i = 0; i < HWORD_SIZE; ++i)
{
data_t b = vm_pop_byte(vm);
h = h | ((word)(b.as_byte) << (i * 8));
}
return DWORD(h);
}
data_t vm_pop_word(vm_t *vm)
{
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return DWORD(0);
word w = 0;
for (size_t i = 0; i < WORD_SIZE; ++i)
{
data_t b = vm_pop_byte(vm);
w = w | ((word)(b.as_byte) << (i * 8));
}
return DWORD(w);
}
void vm_not_byte(vm_t *vm)
{
if (vm->stack.ptr == 0)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(!a));
}
void vm_not_hword(vm_t *vm)
{
if (vm->stack.ptr < HWORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(!a));
}
void vm_not_word(vm_t *vm)
{
if (vm->stack.ptr < WORD_SIZE)
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(!a));
}
void vm_or_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a | b));
}
void vm_or_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a | b));
}
void vm_or_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a | b));
}
void vm_and_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a & b));
}
void vm_and_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a & b));
}
void vm_and_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a & b));
}
void vm_xor_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a ^ b));
}
void vm_xor_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a ^ b));
}
void vm_xor_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a ^ b));
}
void vm_eq_byte(vm_t *vm)
{
if (vm->stack.ptr < 2)
// TODO: Error STACK_UNDERFLOW
return;
byte a = vm_pop_byte(vm).as_byte;
byte b = vm_pop_byte(vm).as_byte;
vm_push_byte(vm, DBYTE(a == b));
}
void vm_eq_hword(vm_t *vm)
{
if (vm->stack.ptr < (HWORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
hword a = vm_pop_hword(vm).as_hword;
hword b = vm_pop_hword(vm).as_hword;
vm_push_hword(vm, DHWORD(a == b));
}
void vm_eq_word(vm_t *vm)
{
if (vm->stack.ptr < (WORD_SIZE * 2))
// TODO: Error STACK_UNDERFLOW
return;
word a = vm_pop_word(vm).as_word;
word b = vm_pop_word(vm).as_word;
vm_push_word(vm, DWORD(a == b));
}