#+title: Emacs configuration #+author: Aryadev Chavali #+description: My Emacs configuration #+property: header-args:emacs-lisp :tangle config.el :comments link :results none #+startup: noindent #+options: toc:t num:t #+latex_header:\usepackage[margin=1.0in]{geometry} #+latex_class: article #+latex_class_options: [a4paper,12pt] * Introduction Welcome to my Emacs configuration. This thing is quite big, but a lot of it has been "write and forget" i.e. I've only needed to configure it once. Sections tagged =WAIT= are currently unused, usually with some reasoning given. Some sections border on blog posts justifying why I think they're good applications or giving some greater reasoning about my specific configuration of a package. If you don't really want that, you may tangle this file, [[file:core.org][the core file]] and [[file:app.org][the app file]] and just read their source code. * Basics Firstly, set full name and mail address. This is used in encryption and mailing. #+begin_src emacs-lisp (setq user-full-name "Aryadev Chavali" user-mail-address "aryadev@aryadevchavali.com") #+end_src Let's set all yes or no questions to single letter responses. #+begin_src emacs-lisp (fset 'yes-or-no-p 'y-or-n-p) #+end_src Set the encoding to UTF-8-Unix by default. #+begin_src emacs-lisp (use-package emacs :demand t :init (setq-default buffer-file-coding-system 'utf-8-unix save-buffer-coding-system 'utf-8-unix)) #+end_src Setup automatic saving for files (in case of system failure) and auto-revert-mode (which refreshes the buffer on changes to the underlying file). Along with that, set the custom-file (which holds temporary customisation) in the etc folder. #+begin_src emacs-lisp (use-package emacs :demand t :init (setq backup-directory-alist `(("." . ,(no-littering-expand-var-file-name "saves/"))) global-auto-revert-non-file-buffers t auto-revert-verbose nil) :config (global-auto-revert-mode 1)) #+end_src * Custom functionality Functions that don't require a packages to work other than Emacs, which means I can define them early. These are used much later in the config. ** WAIT Toggle buffer :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Like VSCode's toggling feature for just the terminal but now for any buffer of choice, as long as I can generate it via a command. 2024-04-23: Don't need this anymore due to ~switch-to-buffer-obey-display-actions~. #+begin_src emacs-lisp (with-eval-after-load "window" (defmacro +oreo/create-toggle-function (func-name buf-name buf-create &optional accept-numeric) "Generate a function named FUNC-NAME that toggles the buffer with name BUF-NAME, using BUF-CREATE to generate it if buffer BUF-NAME does not exist already. BUF-NAME cannot be a regexp, it must be a fixed name. ACCEPT-NUMERIC modifies the function to allow numeric arguments via C-u. Mostly used in Eshell." (let ((interactive-arg (if accept-numeric '(interactive "p") '(interactive))) (arguments (if accept-numeric '(&optional arg) nil)) (buffer-name (if accept-numeric `(if (= arg 1) ,buf-name (concat ,buf-name "<" (int-to-string arg) ">")) buf-name)) (buffer-create (if accept-numeric `(if (= arg 1) (,buf-create) (,buf-create arg)) `(,buf-create)))) `(defun ,func-name ,arguments ,interactive-arg (let* ((buffer (or (get-buffer ,buffer-name) ,buffer-create)) (displayed (get-buffer-window buffer))) (if displayed (delete-window displayed) (display-buffer buffer) (select-window (get-buffer-window buffer)))))))) #+end_src ** Auto-run command after-save-hook Define a macro which creates hooks into the ~after-save-hook~. On certain ~conditions~ being met, ~to-run~ is evaluated. #+begin_src emacs-lisp (use-package simple :defer t :config (defmacro +oreo/create-auto-save (conditions &rest to-run) "Create a hook for after saves, where (on CONDITIONS being met) TO-RUN is evaluated. " `(add-hook 'after-save-hook #'(lambda () (interactive) (when ,conditions ,@to-run))))) #+end_src ** Procedure A ~lambda~ which takes no arguments is a procedure. This macro generates procedures, with the parameters of the macro being the body of the procedure. It returns it in quoted form, as that is the most common use of this macro. (You may notice ~proc~ is used where the return value is irrelevant). #+begin_src emacs-lisp (defmacro proc (&rest BODY) "For a given list of forms BODY, return a quoted 0 argument lambda." `(quote (lambda nil ,@BODY))) #+end_src ** System specificity A macro that acts as a switch case on ~(system-name)~ which allows the writing of system specific code. For me this is for my desktop and laptop, particularly for font sizes. Though there may be an easier solution than this, this seems simple enough. #+begin_src emacs-lisp (defmacro +oreo/sys-name-cond (&rest pairs) "Switch case on result of function `system-name'. Each pair in PAIRS is typed as: (string . (forms...)) where the string represents the system name to test, and forms being the consequence if true." `(cond ,@(mapcar #'(lambda (pair) ;; (str . forms..) -> ((string= str (system-name)) ;; forms...) (let ((name (car pair)) (body (cdr pair))) `((string= ,name (system-name)) ,@body))) pairs))) #+end_src In [[file:early-init.el][early-init.el]] I set the number of native-workers to 4, which isn't necessarily optimal when loading/compiling the rest of this file depending on the machine I use: - On my laptop (=spiderboy=) I'd prefer to have it use 2-3 threads so I can actually use the rest of the laptop while waiting for compilation - On my desktop (=oldboy=) I'd prefer to use 4-6 threads as I can afford more, so I can get a faster load up. #+begin_src emacs-lisp (+oreo/sys-name-cond ("spiderboy" (setq native-comp-async-jobs-number 3)) ("oldboy" (setq native-comp-async-jobs-number 6))) #+end_src ** Clean buffer list Instead of cleaning my buffer list manually, selectively preserving some fixed set of buffers, this function does it for me. Preserves any buffers in ~+oreo/keep-buffer~ and kills the rest. #+begin_src emacs-lisp (defconst +oreo/keep-buffers (list "config.org" "*scratch*" "*dashboard*" "*Messages*" "*Warnings*" "*eshell*") "List of buffer names to preserve.") (defun +oreo/clean-buffer-list () "Kill all buffers except any with names in +oreo/keep-buffers." (interactive) (mapcar #'(lambda (buf) (if (not (member (buffer-name buf) +oreo/keep-buffers)) (kill-buffer buf))) (buffer-list))) #+end_src * Aesthetics General look and feel of Emacs (mostly disabling stuff I don't like). ** Themes *** Dark theme My preferred dark theme is my own "personal-primary" theme which is stored in the Emacs lisp folder (look at [[file:elisp/personal-primary-theme.el][this file]]). It tries to use the primary colours for everything, leading to a colour -> meaning relation. I have an older version of this theme that uses a homogeneous colour scheme ([[file:elisp/personal-theme.el][this file]]) #+begin_src emacs-lisp (use-package custom :demand t :init (setq custom-theme-directory (concat user-emacs-directory "elisp/")) :config (load-theme 'personal-primary t)) #+end_src *** Light theme I'm not very good at designing light themes as I don't really use them. However they are necessary in high light situations where a dark mode would strain the eyes too much. So I built a custom theme on top of the default Emacs theme, "personal-light" (look at [[file:elisp/personal-light-theme.el][this file]]). I don't use it by default but I may need to switch between light and dark easily, so here's a command to switch between them. #+begin_src emacs-lisp (use-package custom :defer t :commands +oreo/switch-theme :init (defvar +oreo/theme 'dark) :config (defun +oreo/switch-theme () (interactive) (cond ((eq +oreo/theme 'dark) (mapc #'disable-theme custom-enabled-themes) (load-theme 'personal-light t) (setq +oreo/theme 'light)) ((eq +oreo/theme 'light) (mapc #'disable-theme custom-enabled-themes) (load-theme 'personal-primary t) (setq +oreo/theme 'dark)))) ) #+end_src ** Font size Set font size to 140 if on my desktop (oldboy) or 175 if on my laptop (spiderboy). #+begin_src emacs-lisp (use-package faces :defer t :config (+oreo/sys-name-cond ("spiderboy" (set-face-attribute 'default nil :height 145)) ("oldboy" (set-face-attribute 'default nil :height 140)))) #+end_src ** Startup screen The default startup screen is quite bad in all honesty. While for a first time user it can be very helpful in running the tutorial and finding out more about Emacs, for someone who's already configured it there isn't much point. The scratch buffer is an interaction buffer made when Emacs is first started, as a way to quickly prototype Emacs Lisp code. When startup screen is disabled, this buffer is the first thing presented on boot for Emacs. So we can use it to store some useful information. #+begin_src emacs-lisp (use-package emacs :defer t :init (setq inhibit-startup-screen t initial-major-mode 'fundamental-mode initial-scratch-message "" ring-bell-function 'ignore) :config (add-hook 'emacs-startup-hook (proc (with-current-buffer "*scratch*" (goto-char (point-max)) (insert (format "Emacs v%s - %s\n" emacs-version (emacs-init-time))))))) #+end_src ** Blinking cursor Turn on blinking cursor (helps with seeing if Emacs is hanging or not). 2021-03-15: Turn off blinking-cursor-mode as [[*Hl-line][hl-line]] is better. #+begin_src emacs-lisp (use-package frame :defer t :init (setq blink-cursor-delay 0.2) :config (blink-cursor-mode 0)) #+end_src ** Fringes Turning off borders in my window manager was a good idea, so turn off the borders for Emacs. #+begin_src emacs-lisp (use-package fringe :defer t :config (fringe-mode 0)) #+end_src ** Mode line A mode line in an editor can provide a LOT of information, or very little. I customised the Emacs modeline to give me a bit of info, ~telephone-line~ to give me a lot. Currently I use the default mode line with some customisation; simplicity is above all. #+begin_src emacs-lisp (setq-default mode-line-format (list "%l:%c " ;; Line and column "%p[" ;; %into file '(:eval (with-eval-after-load "evil" ;; Evil state (upcase (substring (format "%s" (if (bound-and-true-p evil-state) evil-state " ")) 0 1)))) "] " "%+%b(" ;; Buffer name '(:eval (format "%s" major-mode)) ") " "%I " ;; file size '(:eval (if (project-current) (project-name (project-current)))) '(vc-mode vc-mode) ;; git branch " " '(:eval (with-eval-after-load "eglot" (if eglot--managed-mode (eglot--mode-line-format)))) mode-line-misc-info mode-line-end-spaces)) #+end_src ** Mouse Who uses a mouse? 🤮 #+begin_src emacs-lisp (setq-default use-file-dialog nil) #+end_src * Core packages For my core packages, whose configuration doesn't change much anyway, I have a [[file:core.org][separate file]]. Here I'll load it up for usage later on. #+begin_src emacs-lisp ;; (load-file (concat user-emacs-directory "core.el")) #+end_src ** General General provides a great solution for binding keys. It has evil and use-package support so it fits nicely into configuration. In this case, I define a "definer" for the "LEADER" keys. Leader is bound to ~SPC~ and it's functionally equivalent to the doom/spacemacs leader. Local leader is bound to ~SPC ,~ and it's similar to doom/spacemacs leader but doesn't try to fully assimilate the local-leader map, instead just picking stuff I think is useful. This forces me to learn only as many bindings as I find necessary; no more, no less. I also define prefix leaders for differing applications. These are quite self explanatory by their name and provide a nice way to visualise all bindings under a specific heading just by searching the code. #+begin_src emacs-lisp (use-package general :straight t :demand t :config ;; General which key definitions for leaders (general-def :states '(normal motion) "SPC" 'nil "\\" '(nil :which-key "Local leader") "SPC a" '(nil :which-key "Applications") "SPC b" '(nil :which-key "Buffers") "SPC c" '(nil :which-key "Code") "SPC d" '(nil :which-key "Directories") "SPC f" '(nil :which-key "Files") "SPC i" '(nil :which-key "Insert") "SPC m" '(nil :which-key "Modes") "SPC r" '(nil :which-key "Tabs") "SPC s" '(nil :which-key "Search") "SPC t" '(nil :which-key "Shell") "SPC q" '(nil :which-key "Quit/Literate")) (general-create-definer leader :states '(normal motion) :keymaps 'override :prefix "SPC") (general-create-definer local-leader :states '(normal motion) :prefix "\\") (general-create-definer code-leader :states '(normal motion) :keymaps 'override :prefix "SPC c") (general-create-definer file-leader :states '(normal motion) :keymaps 'override :prefix "SPC f") (general-create-definer shell-leader :states '(normal motion) :keymaps 'override :prefix "SPC t") (general-create-definer tab-leader :states '(normal motion) :keymaps 'override :prefix "SPC r") (general-create-definer mode-leader :states '(normal motion) :keymaps 'override :prefix "SPC m") (general-create-definer app-leader :states '(normal motion) :keymaps 'override :prefix "SPC a") (general-create-definer search-leader :states '(normal motion) :keymaps 'override :prefix "SPC s") (general-create-definer buffer-leader :states '(normal motion) :keymaps 'override :prefix "SPC b") (general-create-definer quit-leader :states '(normal motion) :keymaps 'override :prefix "SPC q") (general-create-definer insert-leader :states '(normal motion) :keymaps 'override :prefix "SPC i") (general-create-definer dir-leader :states '(normal motion) :keymaps 'override :prefix "SPC d") (general-create-definer general-nmmap :states '(normal motion)) (defalias 'nmmap #'general-nmmap) (general-evil-setup t)) #+end_src *** Some binds for Emacs Some bindings that I couldn't fit elsewhere easily. #+begin_src emacs-lisp (use-package emacs :after general :general ("C-x d" #'delete-frame) (nmmap "M-;" #'eval-expression "g=" #'align-regexp "C--" #'text-scale-decrease "C-=" #'text-scale-increase "C-+" #'text-scale-adjust) (leader "SPC" '(execute-extended-command :which-key "M-x") "p" `(,project-prefix-map :which-key "Project") "'" '(browse-url-emacs :which-key "Download URL to Emacs") ":" `(,(proc (interactive) (switch-to-buffer "*scratch*")) :which-key "Switch to *scratch*") "!" '(async-shell-command :which-key "Async shell command") "h" '(help-command :which-key "Help")) (mode-leader "T" #'+oreo/switch-theme) (code-leader "F" `(,(proc (interactive) (find-file "~/Code/")) :which-key "Open ~/Code/")) (file-leader "f" #'find-file "F" #'find-file-other-window "s" #'save-buffer) (buffer-leader "b" #'switch-to-buffer "d" #'kill-current-buffer "K" #'kill-buffer "j" #'next-buffer "k" #'previous-buffer "D" '(+oreo/clean-buffer-list :which-key "Kill most buffers")) (quit-leader "q" #'save-buffers-kill-terminal "c" #'+literate/compile-config "C" #'+literate/clean-config "l" #'+literate/load-config) (search-leader "i" #'imenu)) #+end_src ** Evil My editor journey started off with Vim rather than Emacs, so my brain has imprinted on its style. Thankfully Emacs is super extensible so there exists a package (more of a supreme system) for porting Vim's modal editing style to Emacs, called Evil (Emacs Vi Layer). However there are a lot of packages in Vim that provide greater functionality, for example 'vim-surround'. Emacs, by default, has these capabilities but there are further packages which integrate them into Evil. *** Evil core Setup the evil package, with some opinionated keybindings: - Switch ~evil-upcase~ and ~evil-downcase~ because I use ~evil-upcase~ more - Switch ~evil-goto-mark~ and ~evil-goto-mark-line~ as I'd rather have the global one closer to the home row - Use 'T' character as an action for transposing objects #+begin_src emacs-lisp (use-package evil :demand t :straight t :general (leader "w" '(evil-window-map :which-key "Window") "wT" #'window-swap-states "wd" #'evil-window-delete) (nmmap "K" #'man "TAB" #'evil-jump-item "r" #'evil-replace-state "zC" #'hs-hide-level "zO" #'hs-show-all "'" #'evil-goto-mark "`" #'evil-goto-mark-line "C-w" #'evil-window-map "gu" #'evil-upcase "gU" #'evil-downcase "T" nil) (nmmap :infix "T" "w" #'transpose-words "c" #'transpose-chars "s" #'transpose-sentences "p" #'transpose-paragraphs "e" #'transpose-sexps "l" #'transpose-lines) :init (setq evil-want-keybinding nil evil-split-window-below t evil-vsplit-window-right t evil-want-abbrev-expand-on-insert-exit t evil-undo-system #'undo-tree) :config (evil-mode)) #+end_src *** Evil surround Evil surround is a port for vim-surround. #+begin_src emacs-lisp (use-package evil-surround :after evil :straight t :config (global-evil-surround-mode)) #+end_src *** Evil commentary Allows generalised commenting of objects easily. #+begin_src emacs-lisp (use-package evil-commentary :after evil :straight t :config (evil-commentary-mode)) #+end_src *** Evil multi cursor Setup for multi cursors in Evil mode. Don't let evil-mc setup it's own keymap because it uses 'gr' as its prefix, which I don't like. #+begin_src emacs-lisp (use-package evil-mc :after evil :straight t :init (defvar evil-mc-key-map (make-sparse-keymap)) :general (nmap :infix "gz" "q" #'evil-mc-undo-all-cursors "d" #'evil-mc-make-and-goto-next-match "j" #'evil-mc-make-cursor-move-next-line "k" #'evil-mc-make-cursor-move-prev-line "j" #'evil-mc-make-cursor-move-next-line "m" #'evil-mc-make-all-cursors "z" #'evil-mc-make-cursor-here "r" #'evil-mc-resume-cursors "s" #'evil-mc-pause-cursors "u" #'evil-mc-undo-last-added-cursor) :config (global-evil-mc-mode)) ;; (evil-mc-define-vars) ;; (evil-mc-initialize-vars) ;; (add-hook 'evil-mc-before-cursors-created #'evil-mc-pause-incompatible-modes) ;; (add-hook 'evil-mc-before-cursors-created #'evil-mc-initialize-active-state) ;; (add-hook 'evil-mc-after-cursors-deleted #'evil-mc-teardown-active-state) ;; (add-hook 'evil-mc-after-cursors-deleted #'evil-mc-resume-incompatible-modes) ;; (advice-add #'evil-mc-initialize-hooks :override #'ignore) ;; (advice-add #'evil-mc-teardown-hooks :override #'evil-mc-initialize-vars) ;; (advice-add #'evil-mc-initialize-active-state :before #'turn-on-evil-mc-mode) ;; (advice-add #'evil-mc-teardown-active-state :after #'turn-off-evil-mc-mode) ;; (add-hook 'evil-insert-state-entry-hook #'evil-mc-resume-cursors) #+end_src *** Evil collection Provides a community based set of keybindings for most modes in Emacs. I don't necessarily like all my modes having these bindings though, as I may disagree with some. So I use it in a mode to mode basis. #+begin_src emacs-lisp (use-package evil-collection :straight t :after evil) #+end_src *** Evil number Increment/decrement a number at point like Vim does, but use bindings that don't conflict with Emacs default. #+begin_src emacs-lisp (use-package evil-numbers :straight t :defer t :general (nmmap "+" #'evil-numbers/inc-at-pt "-" #'evil-numbers/dec-at-pt)) #+end_src ** Completion Emacs is a text based interface. Completion is its bread and butter in providing good user experience. By default Emacs provides 'completions-list' which produces a buffer of options which can be searched and selected. We can take this further though! Ido and Icomplete are packages distributed with Emacs to provide greater completion interfaces. They utilise the minibuffer to create a more interactive experience, allowing incremental searches and option selection. Ivy and Helm provide more modern interfaces, though Helm is quite heavy. Ivy, on the other hand, provides an interface similar to Ido with less clutter and better customisation options. *** Ivy Ivy is a completion framework for Emacs, and my preferred one. It has a great set of features with little to no pain with setting up. **** Ivy Core Setup for ivy, in preparation for counsel. Turn on ivy-mode just after init. Setup vim-like bindings for the minibuffer ("M-(j|k)" for down|up the selection list). #+begin_src emacs-lisp (use-package ivy :demand t :straight t :general (general-def :keymaps 'ivy-minibuffer-map "C-j" #'ivy-yank-symbol "M-j" #'ivy-next-line-or-history "M-k" #'ivy-previous-line-or-history "C-SPC" #'ivy-occur) (general-def :keymaps 'ivy-switch-buffer-map "M-j" #'ivy-next-line-or-history "M-k" #'ivy-previous-line-or-history) (nmap :keymaps '(ivy-occur-mode-map ivy-occur-grep-mode-map) "RET" #'ivy-occur-press-and-switch "J" #'ivy-occur-press "gr" #'ivy-occur-revert-buffer "q" #'quit-window "D" #'ivy-occur-delete-candidate "W" #'ivy-wgrep-change-to-wgrep-mode "{" #'compilation-previous-file "}" #'compilation-next-file) :init (with-eval-after-load "evil" (evil-set-initial-state 'ivy-occur-mode 'normal) (evil-set-initial-state 'ivy-occur-grep-mode 'normal)) (setq ivy-height 10 ivy-wrap t ivy-fixed-height-minibuffer t ivy-use-virtual-buffers nil ivy-virtual-abbreviate 'full ivy-on-del-error-function #'ignore ivy-use-selectable-prompt t) :config (ivy-mode 1) (require 'counsel nil t)) #+end_src **** Counsel Setup for counsel. Load after ivy and helpful. #+begin_src emacs-lisp (use-package counsel :straight t :defer t :general (search-leader "s" #'counsel-grep-or-swiper "R" #'counsel-rg) (file-leader "r" #'counsel-recentf) (insert-leader "c" #'counsel-unicode-char) (general-def [remap describe-bindings] #'counsel-descbinds [remap load-theme] #'counsel-load-theme) :config (setq ivy-initial-inputs-alist '((org-insert-link . "^")) counsel-describe-function-function #'helpful-callable counsel-describe-variable-function #'helpful-variable counsel-grep-swiper-limit 1500000 ivy-re-builders-alist '((swiper . ivy--regex-plus) (counsel-grep-or-swiper . ivy--regex-plus) (counsel-rg . ivy--regex-plus) (t . ivy--regex-ignore-order))) (counsel-mode 1)) #+end_src **** WAIT Ivy posframe :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: This makes ivy minibuffer windows use child frames. Very nice eyecandy, but can get kinda annoying. #+begin_src emacs-lisp (use-package ivy-posframe :hook (ivy-mode-hook . ivy-posframe-mode) :straight t :init (setq ivy-posframe-parameters '((left-fringe . 0) (right-fringe . 0) (background-color . "grey7"))) (setq ivy-posframe-display-functions-alist '((t . ivy-posframe-display-at-window-center)))) #+end_src **** WAIT Counsel etags :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Counsel etags allows me to search generated tag files for tags. I already have a function defined to generate the tags, so it's just searching them which I find to be a bit of a hassle, and where this package comes in. This has been replaced by [[*xref][xref]] which is inbuilt. #+begin_src emacs-lisp (use-package counsel-etags :after counsel :general (search-leader "t" #'counsel-etags-find-tag)) #+end_src *** WAIT Ido :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Ido is a very old completion package that still works great to this day. Though it is limited in its scope (and may thus be called a completion add-on rather than a full on framework), it is still a very powerful package. With the use of ido-completing-read+, it may be used similarly to a fully fledged completion framework. #+begin_src emacs-lisp (use-package ido :demand t :general (general-def :keymaps '(ido-buffer-completion-map ido-file-completion-map ido-file-dir-completion-map ido-common-completion-map) (kbd "M-j") #'ido-next-match (kbd "M-k") #'ido-prev-match (kbd "C-x o") #'evil-window-up) :init (setq ido-decorations (list "{" "}" " \n" " ..." "[" "]" " [No match]" " [Matched]" " [Not readable]" " [Too big]" " [Confirm]") completion-styles '(flex partial-completion intials emacs22)) (setq-default ido-enable-flex-matching t ido-enable-dot-prefix t ido-enable-regexp nil) (with-eval-after-load "magit" (setq magit-completing-read-function 'magit-ido-completing-read)) :config (ido-mode) (ido-everywhere)) #+end_src **** Ido ubiquitous Ido completing-read+ is a package that extends the ido package to work with more text based functions. #+begin_src emacs-lisp (use-package ido-completing-read+ :after ido :config (ido-ubiquitous-mode +1)) #+end_src *** Amx Amx is a fork of Smex that works to enhance the execute-extended-command interface. It also provides support for ido or ivy (though I'm likely to use ido here) and allows you to switch between them. It provides a lot of niceties such as presenting the key bind when looking for a command. #+begin_src emacs-lisp (use-package amx :straight t :defer t :init (setq amx-backend 'ivy) :config (amx-mode)) #+end_src *** Orderless Orderless sorting method for completion, probably one of the best things ever. #+begin_src emacs-lisp (use-package orderless :straight t :after (ivy ido) :config (setf (alist-get t ivy-re-builders-alist) 'orderless-ivy-re-builder)) #+end_src *** Completions-list In case I ever use the completions list, some basic commands to look around. #+begin_src emacs-lisp (use-package simple :defer t :general (nmmap :keymaps 'completion-list-mode-map "l" #'next-completion "h" #'previous-completion "ESC" #'delete-completion-window "q" #'quit-window "RET" #'choose-completion) :config (with-eval-after-load "evil" (setq evil-emacs-state-modes (cl-remove-if #'(lambda (x) (eq 'completions-list-mode x)) evil-emacs-state-modes)) (add-to-list 'evil-normal-state-modes 'completions-list-mode))) #+end_src *** Company Company is the auto complete system I use. I don't like having heavy setups for company as it only makes it slower to use. In this case, just setup some evil binds for company. #+begin_src emacs-lisp (use-package company :defer t :straight t :hook (prog-mode-hook . company-mode) (eshell-mode-hook . company-mode) :general (imap "C-SPC" #'company-complete "M-j" #'company-select-next "M-k" #'company-select-previous)) #+end_src ** Pretty symbols Prettify symbols mode allows for users to declare 'symbols' that replace text within certain modes. Though this may seem like useless eye candy, it has aided my comprehension and speed of recognition (recognising symbols is easier than words). Essentially a use-package keyword which makes declaring pretty symbols for language modes incredibly easy. Checkout my [[C/C++][C/C++]] configuration for an example. #+begin_src emacs-lisp (use-package prog-mode :demand t :init (setq prettify-symbols-unprettify-at-point t) :config (with-eval-after-load "use-package-core" (add-to-list 'use-package-keywords ':pretty) (defun use-package-normalize/:pretty (_name-symbol _keyword args) args) (defun use-package-handler/:pretty (name _keyword args rest state) (use-package-concat (use-package-process-keywords name rest state) (mapcar #'(lambda (arg) (let ((mode (car arg)) (rest (cdr arg))) `(add-hook ',mode #'(lambda nil (setq prettify-symbols-alist ',rest) (prettify-symbols-mode))))) args))))) #+end_src Here's a collection of keywords and possible associated symbols for any prog language of choice. Mostly for reference and copying. #+begin_example ("null" . "Ø") ("list" . "ℓ") ("string" . "𝕊") ("true" . "⊤") ("false" . "⊥") ("char" . "ℂ") ("int" . "ℤ") ("float" . "ℝ") ("!" . "¬") ("&&" . "∧") ("||" . "∨") ("for" . "∀") ("return" . "⟼") ("print" . "ℙ") ("lambda" . "λ") #+end_example ** Window management Emacs' default window management is quite bad, eating other windows on a whim and not particularly caring for the current window setup. Thankfully you can change this via the ~display-buffer-alist~ which matches buffer names with how the window for the buffer should be displayed. I add a use-package keyword to make ~display-buffer-alist~ records within a use-package call. I have no idea whether it's optimal AT ALL, but it works for me. 2024-04-23: Found this option ~switch-to-buffer-obey-display-actions~ which makes manual buffer switches obey the same constraints via ~display-buffer-alist~ as creating the buffer automatically. #+begin_src emacs-lisp (use-package window :demand t :general :init (setq switch-to-buffer-obey-display-actions t) (with-eval-after-load "use-package-core" (add-to-list 'use-package-keywords ':display) (defun use-package-normalize/:display (_name-symbol _keyword args) args) (defun use-package-handler/:display (name _keyword args rest state) (use-package-concat (use-package-process-keywords name rest state) (mapcar #'(lambda (arg) `(add-to-list 'display-buffer-alist ',arg)) args))))) #+end_src *** Some display records Using the ~:display~ keyword, setup up some ~display-buffer-alist~ records. This is mostly for packages that aren't really configured (like [[info:woman][woman]]) or packages that were configured before (like [[Ivy][Ivy]]). #+begin_src emacs-lisp (use-package window :defer t :display ("\\*Process List\\*" (display-buffer-at-bottom) (window-height . 0.25)) ("\\*\\(Ido \\)?Completions\\*" (display-buffer-in-side-window) (window-height . 0.25) (side . bottom)) ("\\*ivy-occur.*" (display-buffer-at-bottom) (window-height . 0.25)) ("\\*Async Shell Command\\*" (display-buffer-at-bottom) (window-height . 0.25))) #+end_src ** Tabs Tabs in vscode are just like buffers in Emacs but way slower and harder to use. Tabs in Emacs are essentially window layouts, similar to instances in Tmux. With this setup I can use tabs quite effectively. #+begin_src emacs-lisp (use-package tab-bar :defer t :init (setq tab-bar-show 1) :config (tab-bar-mode) :general (tab-leader "t" #'tab-switch "j" #'tab-next "k" #'tab-previous "h" #'tab-move-to "l" #'tab-move "n" #'tab-new "c" #'tab-close "d" #'tab-close "f" #'tab-detach "w" #'tab-window-detach "r" #'tab-rename) (mode-leader "t" #'toggle-tab-bar-mode-from-frame)) #+end_src ** Auto typing Snippets are a pretty nice way of automatically inserting code. Emacs provides a ton of packages by default to do this, but there are great packages to install as well. Abbrevs and skeletons make up a popular solution within Emacs default. Abbrevs are for simple expressions wherein the only input is the key, and the output is some Elisp function. They provide a lot of inbuilt functionality and are quite useful. Skeletons, on the other hand, are for higher level insertions The popular external solution is Yasnippet. Yasnippet is a great package for snippets, which I use heavily in programming and org-mode. I setup here the global mode for yasnippet and a collection of snippets for ease of use. *** Abbrevs Just define a few abbrevs for various date-time operations. Also define a macro that will assume a function for the expansion, helping with abstracting a few things away. #+begin_src emacs-lisp (use-package abbrev :defer t :hook (prog-mode-hook . abbrev-mode) (text-mode-hook . abbrev-mode) :init (defmacro +abbrev/define-abbrevs (abbrev-table &rest abbrevs) `(progn ,@(mapcar #'(lambda (abbrev) `(define-abbrev ,abbrev-table ,(car abbrev) "" (proc (insert ,(cadr abbrev))))) abbrevs))) (setq save-abbrevs nil) :config (+abbrev/define-abbrevs global-abbrev-table ("sdate" (format-time-string "%Y-%m-%d" (current-time))) ("stime" (format-time-string "%H:%M:%S" (current-time))) ("sday" (format-time-string "%A" (current-time))) ("smon" (format-time-string "%B" (current-time))))) #+end_src *** WAIT Skeletons :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Defines a macro for generating a skeleton + abbrev for a given mode. Doesn't sanitise inputs because I assume callers are /rational/ actors who would *only* use this for their top level Emacs config. Honestly didn't find much use for this currently, so disabled. #+begin_src emacs-lisp (use-package skeleton :after abbrev :config (defmacro +autotyping/gen-skeleton-abbrev (mode abbrev &rest skeleton) (let* ((table (intern (concat (symbol-name mode) "-abbrev-table"))) (skeleton-name (intern (concat "+skeleton/" (symbol-name mode) "/" abbrev)))) `(progn (define-skeleton ,skeleton-name "" ,@skeleton) (define-abbrev ,table ,abbrev "" ',skeleton-name))))) #+end_src *** Auto insert Allows inserting text immediately upon creating a new buffer with a given name. Supports skeletons for inserting text. To make it easier for later systems to define their own auto inserts, I define a ~use-package~ keyword ~auto-insert~ which allows one to define an entry for ~auto-insert-alist~. #+begin_src emacs-lisp (use-package autoinsert :demand t :hook (emacs-startup-hook . auto-insert-mode) :config (with-eval-after-load "use-package-core" (add-to-list 'use-package-keywords ':auto-insert) (defun use-package-normalize/:auto-insert (_name-symbol _keyword args) args) (defun use-package-handler/:auto-insert (name _keyword args rest state) (use-package-concat (use-package-process-keywords name rest state) (mapcar #'(lambda (arg) `(add-to-list 'auto-insert-alist ',arg)) args))))) #+end_src *** Yasnippet Look at the snippets [[file:../.config/yasnippet/snippets/][folder]] for all snippets I've got. #+begin_src emacs-lisp (use-package yasnippet :straight t :defer t :hook (prog-mode-hook . yas-minor-mode) (text-mode-hook . yas-minor-mode) :general (insert-leader "i" #'yas-insert-snippet) :config (yas-load-directory (no-littering-expand-etc-file-name "yasnippet/snippets"))) #+end_src *** WAIT Hydra :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Hydra is a great package by =abo-abo= (yes the same guy who made ivy and swiper) and I hope to use it later on in the config. There are two use-package declarations here: one for ~hydra~ itself, and the other for ~use-package-hydra~ which provides the keyword ~:hydra~ in use-package declarations. #+begin_src emacs-lisp (use-package hydra :straight t) (use-package use-package-hydra :straight t) #+end_src * Small packages ** Info Info is GNU's attempt at better man pages. Most Emacs packages have info pages so I'd like nice navigation options. #+begin_src emacs-lisp (use-package info :defer t :general (nmmap :keymaps 'Info-mode-map "h" #'evil-backward-char "k" #'evil-previous-line "l" #'evil-forward-char "H" #'Info-history-back "L" #'Info-history-forward "RET" #'Info-follow-nearest-node)) #+end_src ** Display line numbers I don't really like line numbers, I find them similar to [[*Fringes][fringes]] as useless space, but at least it provides some information. Sometimes it can help with doing repeated commands so a toggle option is necessary. #+begin_src emacs-lisp (use-package display-line-numbers :defer t :commands display-line-numbers-mode :general (mode-leader "l" #'display-line-numbers-mode) :init (setq-default display-line-numbers-type 'relative)) #+end_src ** WAIT esup :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: I used to be able to just use [[file:elisp/profiler-dotemacs.el][profile-dotemacs.el]], when my Emacs config was smaller, but now it tells me very little information about where my setup is inefficient due to the literate config. Just found this ~esup~ thing and it works perfectly, exactly how I would prefer getting this kind of information. It runs an external Emacs instance and collects information from it, so it doesn't require restarting Emacs to profile, and I can compile my configuration in my current instance to test it immediately. 2023-10-16: Unless I'm doing some optimisations or tests, I don't really need this in my config at all times. Enable when needed. #+begin_src emacs-lisp (use-package esup :straight t :defer t) #+end_src ** Hl-line Highlights the current line. #+begin_src emacs-lisp (use-package hl-line :straight t :defer t :hook (text-mode-hook . hl-line-mode) :hook (prog-mode-hook . hl-line-mode)) #+end_src ** Recentf Recentf provides a method of keeping track of recently opened files. #+begin_src emacs-lisp (use-package recentf :defer t :hook (emacs-startup-hook . recentf-mode)) #+end_src ** Avy Setup avy with leader. As I use ~avy-goto-char-timer~ a lot, use the ~C-s~ bind which replaces isearch. Switch isearch to M-s in case I need to use it. #+begin_src emacs-lisp (use-package avy :straight t :defer t :general (nmmap :keymaps 'override "C-s" #'avy-goto-char-timer "M-s" #'isearch-forward "gp" #'avy-move-region "gl" #'avy-goto-line "gw" #'avy-goto-word-1)) #+end_src ** Ace window Though evil provides a great many features in terms of window management, ace window can provide some nicer chords for higher management of windows (closing, switching, etc). #+begin_src emacs-lisp (use-package ace-window :straight t :defer t :custom (aw-keys '(?a ?s ?d ?f ?g ?h ?j ?k ?l)) :general (nmmap [remap evil-window-next] #'ace-window)) #+end_src ** Ace link Avy-style link following! #+begin_src emacs-lisp (use-package ace-link :straight t :defer t :general (nmmap :keymaps 'override "gL" #'ace-link)) #+end_src ** Helpful Helpful provides a modernised interface for some common help commands. I replace ~describe-function~, ~describe-variable~ and ~describe-key~ by their helpful counterparts. #+begin_src emacs-lisp (use-package helpful :straight t :defer t :commands (helpful-callable helpful-variable) :general (general-def [remap describe-function] #'helpful-callable [remap describe-variable] #'helpful-variable [remap describe-key] #'helpful-key) :display ("\\*helpful.*" (display-buffer-at-bottom) (inhibit-duplicate-buffer . t) (window-height . 0.25)) :config (evil-define-key 'normal helpful-mode-map "q" #'quit-window)) #+end_src ** Which-key Which key uses the minibuffer when performing a keybind to provide possible options for the next key. #+begin_src emacs-lisp (use-package which-key :straight t :defer t :config (which-key-mode)) #+end_src ** (Rip)grep Grep is a great piece of software, a necessary tool in any Linux user's inventory. By default Emacs has a family of functions to use grep, presenting results in a ~compilation~ style. ~grep~ searches files, ~rgrep~ searches in a directory using the ~find~ program and ~zgrep~ searches archives. This is a great solution for a general computer environment; essentially all Linux installs will have ~grep~ and ~find~ installed. Ripgrep is a Rust program that attempts to perform better than grep, and it actually does. This is because of a set of optimisations, such as checking the =.gitignore= to exclude certain files from being searched. The ripgrep package provides utilities to ripgrep projects and files for strings. Though [[file:core.org::*Ivy][ivy]] comes with ~counsel-rg~, it uses Ivy's completion framework rather than the ~compilation~ style buffers, which sometimes proves very useful. Of course, this requires installing the rg binary which is available in most repositories nowadays. *** Grep I have no use for standard 'grep'; ~counsel-swiper~ does the same thing faster and within Emacs lisp. ~rgrep~ is useful though. #+begin_src emacs-lisp (use-package grep :defer t :display ("^\\*grep.*" (display-buffer-at-bottom display-buffer-reuse-window) (window-height . 0.35) (reusable-frames . t)) :general (search-leader "d" #'rgrep) (nmmap :keymaps 'grep-mode-map "0" #'evil-beginning-of-line "q" #'quit-window "i" #'wgrep-change-to-wgrep-mode "c" #'recompile) (nmmap :keymaps 'wgrep-mode-map "q" #'evil-record-macro "ZZ" #'wgrep-finish-edit "ZQ" #'wgrep-abort-changes) :config ;; Without this wgrep doesn't work properly (evil-set-initial-state 'grep-mode 'normal)) #+end_src *** rg #+begin_src emacs-lisp (use-package rg :straight t :defer t :display ("^\\*\\*ripgrep\\*\\*" (display-buffer-at-bottom display-buffer-reuse-window) (window-height . 0.35) (reusable-frames . t)) :general (search-leader "r" #'rg) (nmmap :keymaps 'rg-mode-map "c" #'rg-recompile "C" #'rg-rerun-toggle-case "]]" #'rg-next-file "[[" #'rg-prev-file "q" #'quit-window "i" #'wgrep-change-to-wgrep-mode) :init (setq rg-group-result t rg-hide-command t rg-show-columns nil rg-show-header t rg-custom-type-aliases nil rg-default-alias-fallback "all" rg-buffer-name "*ripgrep*") :config (evil-set-initial-state 'rg-mode 'normal)) #+end_src ** Olivetti Olivetti provides a focus mode for Emacs, which makes it look a bit nicer with fringes. I also define ~+olivetti-mode~ which will remember and clear up any window configurations on the frame, then when turned off will reinsert them - provides a nice way to quickly focus on a buffer. #+begin_src emacs-lisp (use-package olivetti :straight t :defer t :commands (+olivetti-mode) :general (mode-leader "o" #'+olivetti-mode) :init (setq-default olivetti-body-width 0.6) (setq olivetti-style 'fancy) (add-hook 'olivetti-mode-on-hook (proc (interactive) (text-scale-increase 1))) (add-hook 'olivetti-mode-off-hook (proc (interactive) (text-scale-decrease 1))) :config (defun +olivetti-mode () (interactive) (if (not olivetti-mode) (progn (window-configuration-to-register 1) (delete-other-windows) (olivetti-mode t)) (jump-to-register 1) (olivetti-mode 0)))) #+end_src *** Presentation mode A simple presentation system using org-mode and olivetti. #+begin_src emacs-lisp (use-package olivetti :defer t :config (defun +presentation/prev-slide () (interactive) (when presentation-mode (widen) (outline-previous-visible-heading 1) (end-of-line) (if (org-fold-folded-p) (org-cycle)) (org-narrow-to-subtree))) (defun +presentation/next-slide () (interactive) (when presentation-mode (widen) (outline-next-visible-heading 1) (end-of-line) (if (org-fold-folded-p) (org-cycle)) (org-narrow-to-subtree))) (defvar presentation-mode-map (make-sparse-keymap)) (define-minor-mode presentation-mode "When in org-mode, use each heading like a slide!" :lighter nil :keymap presentation-mode-map (cond (presentation-mode (olivetti-mode t) (outline-show-heading) (org-narrow-to-subtree)) (t (olivetti-mode -1) (widen)))) :general (leader :states 'normal :keymaps 'presentation-mode-map "j" #'+presentation/next-slide "k" #'+presentation/prev-slide) (local-leader :keymaps 'org-mode-map "P" #'presentation-mode)) #+end_src ** All the Icons Nice set of icons with a great user interface to manage them. #+begin_src emacs-lisp (use-package all-the-icons :straight t :defer t :commands (all-the-icons-insert) :general (insert-leader "e" #'all-the-icons-insert)) #+end_src ** Hide mode line Custom minor mode to toggle the mode line. Check it out at [[file:elisp/hide-mode-line.el][elisp/hide-mode-line.el]]. #+begin_src emacs-lisp (use-package hide-mode-line :load-path "elisp/" :defer t :general (mode-leader "m" #'hide-mode-line-mode)) #+end_src ** Save place Saves current place in a buffer permanently, so on revisiting the file (even in a different Emacs instance) you go back to the place you were at last. #+begin_src emacs-lisp (use-package saveplace :defer t :config (save-place-mode)) #+end_src ** Rot13 ROT13 encoding is a pretty simple cipher; fun to make decoders and encoders for. Emacs has default support for it, to the point where it can display files with the encoding without changing the underlying text. That's what this is mainly for. #+begin_src emacs-lisp (use-package rot13 :defer t :general (mode-leader "r" #'toggle-rot13-mode)) #+end_src ** Licensing Loads [[file:elisp/license.el][license.el]] for inserting licenses. Licenses are important for distribution and attribution to be defined clearly. #+begin_src emacs-lisp (use-package license :defer t :load-path "elisp/" :general (insert-leader "l" #'+license/insert-copyright-notice "L" #'+license/insert-complete-license)) #+end_src ** Memory-report New feature of Emacs-29, gives a rough report of memory usage with some details. Useful to know on a long Emacs instance what could be eating up memory. #+begin_src emacs-lisp (use-package memory-report :defer t :general (leader "qm" #'memory-report)) #+end_src ** Save minibuffer history #+begin_src emacs-lisp (use-package savehist :defer t :config (savehist-mode t)) #+end_src ** Drag Stuff #+begin_src emacs-lisp (use-package drag-stuff :straight t :defer t :general (nmmap "C-M-h" #'drag-stuff-left "C-M-j" #'drag-stuff-down "C-M-k" #'drag-stuff-up "C-M-l" #'drag-stuff-right)) #+end_src ** Searching git directories efficiently Using [[file:elisp/search.el][search.el]] I can search a set of directories particularly efficiently. #+begin_src emacs-lisp (use-package search :defer t :load-path "elisp/" :general (file-leader "P" #'+search/find-file "S" #'+search/search-all)) #+end_src * Applications Emacs is basically an operating system whose primary datatype is text. Applications are interfaces/environments which serve a variety of purposes, but provide a lot of capability. I have a [[file:app.org][separate file]] for such configuration (2023-09-29: mainly because it was so goddamn huge). #+begin_src emacs-lisp ;; (load-file (concat user-emacs-directory "app.el")) #+end_src ** WAIT Dashboard :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Dashboard creates a custom dashboard for Emacs that replaces the initial startup screen in default Emacs. It has a lot of customising options. Unfortunately not that useful, many things are easier to invoke directly such as recent files or project changing. #+begin_src emacs-lisp (use-package dashboard :straight t :demand t :general (app-leader "b" #'dashboard-refresh-buffer) (:states '(normal motion emacs) :keymaps 'dashboard-mode-map "q" (proc (interactive) (kill-this-buffer))) (nmmap :keymaps 'dashboard-mode-map "r" #'dashboard-jump-to-recent-files "p" #'dashboard-jump-to-projects "}" #'dashboard-next-section "{" #'dashboard-previous-section) :init (setq initial-buffer-choice nil dashboard-banner-logo-title "Oreomacs" dashboard-center-content t dashboard-set-init-info t dashboard-startup-banner (no-littering-expand-etc-file-name "dashboard/logo.png") dashboard-set-footer t dashboard-set-navigator t dashboard-items '((projects . 5) (recents . 5)) dashboard-footer-messages (list "Collecting parentheses..." "Linking 'coffee_machine.o'..." "Uploading ip to hacker named 4chan..." "Dividing by zero..." "Solving 3-sat..." "Obtaining your health record..." (format "Recompiling Emacs for the %dth time..." (random 1000)) "Escaping the cycle of samsara...")) :config (dashboard-setup-startup-hook)) #+end_src ** EWW Emacs Web Wowser is the inbuilt text based web browser for Emacs. It can render images and basic CSS styles but doesn't have a JavaScript engine, which makes sense as it's primarily a text interface. #+begin_src emacs-lisp (use-package eww :defer t :general (app-leader "ww" #'eww "wb" #'+eww/bookmarks-search "we" #'+eww/bookmarks-edit) (nmmap :keymaps 'eww-mode-map "w" #'evil-forward-word-begin "Y" #'shr-probe-and-copy-url) :config (with-eval-after-load "evil-collection" (evil-collection-eww-setup)) (defun bookmark->alist (bookmark) (cons (plist-get bookmark :title) (plist-get bookmark :url))) (defun +eww/bookmarks-edit nil (interactive) (find-file (concat eww-bookmarks-directory "eww-bookmarks"))) (defun +eww/bookmarks-search nil (interactive) (let ((bookmarks (mapcar #'bookmark->alist eww-bookmarks))) (eww (alist-get (completing-read "Bookmark: " (mapcar #'car bookmarks) nil t) bookmarks nil nil #'string=))))) #+end_src ** Calendar Calendar is a simple inbuilt application that helps with date functionalities. I add functionality to copy dates from the calendar to the kill ring and bind it to "Y". #+begin_src emacs-lisp (use-package calendar :defer t :commands (+calendar/copy-date +calendar/toggle-calendar) :display ("\\*Calendar\\*" (display-buffer-at-bottom) (inhibit-duplicate-buffer . t) (window-height . 0.17)) :general (nmmap :keymaps 'calendar-mode-map "Y" #'+calendar/copy-date) (app-leader "d" #'calendar) :config (defun +calendar/copy-date () "Copy date under cursor into kill ring." (interactive) (if (use-region-p) (call-interactively #'kill-ring-save) (let ((date (calendar-cursor-to-date))) (when date (setq date (encode-time 0 0 0 (nth 1 date) (nth 0 date) (nth 2 date))) (kill-new (format-time-string "%Y-%m-%d" date))))))) #+end_src ** Mail Mail is a funny thing; most people use it just for business or advertising and it's come out of use in terms of personal communication in the west for the most part (largely due to "social" media applications). However, this isn't true for the open source and free software movement who heavily use mail for communication. Integrating mail into Emacs helps as I can send source code and integrate it into my workflow just a bit better. *** Notmuch #+begin_src emacs-lisp (use-package notmuch :straight t :defer t :commands (notmuch +mail/flag-thread) :general (app-leader "m" #'notmuch) (nmap :keymaps 'notmuch-search-mode-map "f" #'+mail/flag-thread) :init (defconst +mail/signature "---------------\nAryadev Chavali") (defconst +mail/local-dir (no-littering-expand-var-file-name "mail/")) (setq notmuch-show-logo nil notmuch-search-oldest-first nil notmuch-hello-sections '(notmuch-hello-insert-saved-searches notmuch-hello-insert-alltags notmuch-hello-insert-recent-searches) notmuch-archive-tags '("-inbox" "-unread" "+archive") mail-signature +mail/signature mail-default-directory +mail/local-dir mail-source-directory +mail/local-dir message-signature +mail/signature message-auto-save-directory +mail/local-dir message-directory +mail/local-dir) (defun +mail/sync-mail () "Sync mail via mbsync." (interactive) (start-process-shell-command "" nil "mbsync -a")) (defun +mail/trash-junk () "Delete any mail in junk" (interactive) (start-process-shell-command "" nil "notmuch search --output=files --format=text0 tag:deleted tag:spam tag:trash tag:junk | xargs -r0 rm")) :config (defun +mail/flag-thread (&optional unflag beg end) (interactive (cons current-prefix-arg (notmuch-interactive-region))) (notmuch-search-tag (notmuch-tag-change-list '("-inbox" "+flagged") unflag) beg end) (when (eq beg end) (notmuch-search-next-thread))) (advice-add #'notmuch-poll-and-refresh-this-buffer :after #'+mail/trash-junk) (with-eval-after-load "evil-collection" (evil-collection-notmuch-setup))) #+end_src *** Smtpmail #+begin_src emacs-lisp (use-package smtpmail :defer t :commands mail-send :init (setq-default smtpmail-smtp-server "mail.aryadevchavali.com" smtpmail-smtp-user "aryadev" smtpmail-smtp-service 587 smtpmail-stream-type 'starttls send-mail-function #'smtpmail-send-it message-send-mail-function #'smtpmail-send-it)) #+end_src ** Dired Setup for dired. Make dired-hide-details-mode the default mode when using dired-mode, as it removes the clutter. Setup evil collection for dired (even though dired doesn't really conflict with evil, there are some corners I'd like to adjust). #+begin_src emacs-lisp (use-package dired :demand t :commands (dired find-dired) :hook (dired-mode-hook . auto-revert-mode) (dired-mode-hook . dired-hide-details-mode) :init (setq-default dired-listing-switches "-AFBlu --group-directories-first" dired-omit-files "^\\." dired-dwim-target t image-dired-external-viewer "nsxiv") (with-eval-after-load "evil-collection" (evil-collection-dired-setup)) :general (nmmap :keymaps 'dired-mode-map "SPC" nil "SPC ," nil "T" #'dired-create-empty-file "H" #'dired-up-directory "L" #'dired-find-file) (dir-leader "f" #'find-dired "d" #'dired "D" #'dired-other-window "i" #'image-dired "p" `(,(proc (interactive) (dired "~/Text/PDFs/")) :which-key "Open PDFs")) (local-leader :keymaps 'dired-mode-map "i" #'dired-maybe-insert-subdir "I" #'+dired/insert-all-subdirectories "k" #'dired-prev-subdir "j" #'dired-next-subdir "K" #'dired-kill-subdir "m" #'dired-mark-files-regexp "u" #'dired-undo) (nmmap :keymaps 'image-dired-thumbnail-mode-map "h" #'image-dired-backward-image "l" #'image-dired-forward-image "j" #'image-dired-next-line "k" #'image-dired-previous-line "H" #'image-dired-display-previous "L" #'image-dired-display-next "RET" #'image-dired-display-this "m" #'image-dired-mark-thumb-original-file "q" #'quit-window) :config (add-to-list 'dired-guess-shell-alist-user '("\\.pdf\\'" "zathura")) (defun +dired/insert-all-subdirectories () "Insert all subdirectories currently viewable." (interactive) (dired-mark-directories nil) (mapc #'dired-insert-subdir (dired-get-marked-files)) (dired-unmark-all-marks))) #+end_src *** fd-dired Uses fd for finding file results in a directory: ~find-dired~ -> ~fd-dired~. #+begin_src emacs-lisp (use-package fd-dired :straight t :after dired :general (dir-leader "g" #'fd-dired)) #+end_src *** wdired Similar to [[file:config.org::*(Rip)grep][wgrep]] =wdired= provides the ability to use Emacs motions and editing on file names. This makes stuff like mass renaming and other file management tasks way easier than even using the mark based system. #+begin_src emacs-lisp (use-package wdired :straight t :after dired :general (nmmap :keymaps 'dired-mode-map "W" #'wdired-change-to-wdired-mode) (nmmap :keymaps 'wdired-mode-map "ZZ" #'wdired-finish-edit "ZQ" #'wdired-abort-changes)) #+end_src ** WAIT Xwidget :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Xwidget is a package which allows for the insertion of arbitrary xwidgets into Emacs through buffers. It must be compiled into Emacs so you might need to customise your install. One of its premier uses is in navigating the web which it provides through the function ~xwidget-webkit-browse-url~. This renders a fully functional web browser within Emacs. Though I am not to keen on using Emacs to browse the web /via/ xwidget (EWW does a good job on its own), I am very interested in its capability to render pages with JavaScript, as it may come of use when doing web development. I can see the results of work very quickly without switching windows all within Emacs. 2023-10-20: Disabled as it didn't seem to work, and honestly wasn't that useful. *** Xwidget Core #+begin_src emacs-lisp (use-package xwidget :general (app-leader "u" #'xwidget-webkit-browse-url) (nmmap :keymaps 'xwidget-webkit-mode-map "q" #'quit-window "h" #'xwidget-webkit-scroll-backward "j" #'xwidget-webkit-scroll-up "k" #'xwidget-webkit-scroll-down "l" #'xwidget-webkit-scroll-forward "+" #'xwidget-webkit-zoom-in "-" #'xwidget-webkit-zoom-out (kbd "C-f") #'xwidget-webkit-scroll-up (kbd "C-b") #'xwidget-webkit-scroll-down "H" #'xwidget-webkit-back "L" #'xwidget-webkit-forward "gu" #'xwidget-webkit-browse-url "gr" #'xwidget-webkit-reload "gg" #'xwidget-webkit-scroll-top "G" #'xwidget-webkit-scroll-bottom)) #+end_src *** Xwidget Extensions Define a function ~+xwidget/render-file~ that reads a file name and presents it in an xwidget. If the current file is an HTML file, ask if user wants to open current file. Bind it to ~aU~ in the leader. Also define a function ~+xwidget/search-query~ that first asks the user what search engine they want to use ([[https://duckduckgo.com][Duck Duck Go]] and [[https://devdocs.io][DevDocs]] currently) then asks for a query, which it parses then presents in an xwidget window. Bind to ~as~ in the leader. #+begin_src emacs-lisp (use-package xwidget :commands (+xwidget/render-file +xwidget/search) :general (app-leader "U" #'+xwidget/render-file "s" #'+xwidget/search) :config (setenv "WEBKIT_FORCE_SANDBOX" "0") (defun +xwidget/render-file (&optional FORCE) "Find file (or use current file) and render in xwidget." (interactive) (cond ((and (not FORCE) (or (string= (replace-regexp-in-string ".*.html" "html" (buffer-name)) "html") (eq major-mode 'web-mode) (eq major-mode 'html-mode))) ; If in html file (if (y-or-n-p "Open current file?: ") ; Maybe they want to open a separate file (xwidget-webkit-browse-url (format "file://%s" (buffer-file-name))) (+xwidget/render-file t))) ; recurse and open file via prompt (t (xwidget-webkit-browse-url (format "file://%s" (read-file-name "Enter file to open: ")))))) (defun +xwidget/search () "Run a search query on some search engine and display in xwidget." (interactive) (let* ((engine (completing-read "Engine: " '("duckduckgo.com" "devdocs.io") nil t)) (query-raw (read-string "Enter query: ")) (query (cond ((string= engine "duckduckgo.com") query-raw) ((string= engine "devdocs.io") (concat "_ " query-raw))))) (xwidget-webkit-browse-url (concat "https://" engine "/?q=" query))))) #+end_src ** Eshell *** Why Eshell? Eshell is an integrated shell environment for Emacs, written in Emacs Lisp. I argue that it is the best shell/command interpreter to use in Emacs. Eshell is unlike the alternatives in Emacs as it's a /shell/ first, not a terminal emulator. It has the ability to spoof some aspects of a terminal emulator (through the shell parser), but it is NOT a terminal emulator. The killer benefits of eshell (which would appeal to Emacs users) are a direct result of eshell being written in Emacs lisp: - incredible integration with Emacs utilities (such as ~dired~, ~find-file~, any read functions, etc) - very extensible, easy to write new commands which leverage Emacs commands as well as external utilities - agnostic of platform: "eshell/cd" will call the underlying change directory function for you, so commands will (usually) mean the same thing regardless of platform - this means as long as Emacs can run on an operating system, one may run eshell However, my favourite feature of eshell is the set of evaluators that run on command input. Some of the benefits listed above come as a result of this powerful feature. These evaluators are described below. Lisp evaluator: works on braced expressions, evaluating them as Lisp expressions (e.g. ~(message "Hello, World!\n")~). Any returned objects are printed. This makes eshell a LISP REPL! External evaluator: works within curly braces, evaluating them via some external shell process (like sh) (e.g. ~{echo "Hello, world!\n"}~). This makes eshell a (kinda dumb) terminal emulator! The alias evaluator is the top level evaluator. It is the main evaluator for each expression given to eshell. When given an expression it tries to evaluate it by testing against these conditions: - it's an alias defined by the user or in the ~eshell/~ namespace of functions (simplest evaluator) - it's some form of lisp expression (lisp evaluator) - it's an external command (bash evaluator) Essentially, you get the best of both Emacs and external shell programs *ALL WITHIN* Emacs for free. *** Eshell functionality Bind some evil-like movements for easy shell usage, and a toggle function to pull up the eshell quickly. #+begin_src emacs-lisp (use-package eshell :defer t :general (shell-leader "t" #'eshell) :init (add-hook 'eshell-mode-hook (proc (interactive) (general-def :states '(normal insert) :keymaps 'eshell-mode-map "M-j" #'eshell-next-matching-input-from-input "M-k" #'eshell-previous-matching-input-from-input) (local-leader :keymaps 'eshell-mode-map "c" (proc (interactive) (eshell/clear) (recenter)) "k" #'eshell-kill-process)))) #+end_src *** Eshell pretty symbols and display Pretty symbols and a display record. #+begin_src emacs-lisp (use-package eshell :defer t :pretty (eshell-mode-hook ("lambda" . "λ") ("numberp" . "ℤ") ("t" . "⊨") ("nil" . "Ø")) :display ("\\*e?shell\\*" ; for general shells as well (display-buffer-at-bottom) (window-height . 0.33))) #+end_src *** Eshell variables and aliases Set some sane defaults, a banner and a prompt. The prompt checks for a git repo in the current directory and provides some extra information in that case (in particular, branch name and if there any changes that haven't been committed). #+begin_src emacs-lisp (use-package eshell :defer t :config (defun +eshell/--git-get-remote-status () (let* ((branch-status (split-string (shell-command-to-string "git status | grep 'Your branch is'"))) (status (nth 3 branch-status)) (diff (cl-position "by" branch-status :test #'string=))) (if (null diff) (propertize "=" 'font-lock-face '(:foreground "green")) (let ((n (nth (+ 1 diff) branch-status))) (concat (cond ((string= status "ahead") (propertize "→ " 'font-lock-face '(:foreground "dodger blue"))) ((string= status "behind") (propertize "← " 'font-lock-face '(:foreground "orange red")))) n))))) (defun +eshell/--git-get-change-status () (let ((changed-files (- (length (split-string (shell-command-to-string "git status -s" ) "\n")) 1))) (if (= changed-files 0) (propertize "✓" 'font-lock-face '(:foreground "green")) (propertize (number-to-string changed-files) 'font-lock-face '(:foreground "red"))))) (defun +eshell/get-git-properties () (let ((git-branch (shell-command-to-string "git branch"))) (if (or (string= git-branch "") (not (string= "*" (substring git-branch 0 1)))) "" (format "(%s<%s>[%s])" (nth 2 (split-string git-branch "\n\\|\\*\\| ")) (+eshell/--git-get-change-status) (+eshell/--git-get-remote-status))))) (defun +eshell/prompt-function () (let ((git (+eshell/get-git-properties))) (mapconcat (lambda (item) (if (listp item) (propertize (car item) 'read-only t 'font-lock-face (cdr item) 'front-sticky '(font-lock-face read-only) 'rear-nonsticky '(font-lock-face read-only)) item)) (list '("[") `(,(abbreviate-file-name (eshell/pwd)) :foreground "LimeGreen") '("]") (if (string= git "") "" (concat "-" git "")) "\n" `(,(format-time-string "[%H:%M:%S]") :foreground "purple") "\n" '("𝜆> " :foreground "DeepSkyBlue"))))) (defun +eshell/banner-message () (concat (shell-command-to-string "~/.local/scripts/cowfortune") "\n")) (setq eshell-cmpl-ignore-case t eshell-cd-on-directory t eshell-banner-message '(+eshell/banner-message) eshell-highlight-prompt nil eshell-prompt-function #'+eshell/prompt-function eshell-prompt-regexp "^𝜆> ")) #+end_src *** Eshell change directory quickly Add ~eshell/goto~, which is actually a command accessible from within eshell (this is because ~eshell/*~ creates an accessible function within eshell with name ~*~). ~eshell/goto~ makes it easier to change directories by using Emacs' find-file interface (which is much faster than ~cd ..; ls -l~). ~eshell/goto~ is a better ~cd~ for eshell. However it is really just a plaster over a bigger issue for my workflow; many times I want eshell to be present in the current directory of the buffer I am using. So here's also a command for opening eshell with the current directory. #+begin_src emacs-lisp (use-package eshell :defer t :general (leader "T" #'+eshell/current-buffer) :config (defun eshell/goto (&rest args) "Use `read-directory-name' to change directories." (eshell/cd (list (read-directory-name "Directory?: ")))) (defun eshell/project-root (&rest args) "Change to directory `project-root'" (if (project-current) (eshell/cd (list (project-root (project-current)))) (eshell/echo (format "[%s]: No project in current directory" (propertize "Error" 'font-lock-face '(:foreground "red")))))) (defun +eshell/current-buffer () (interactive) (let ((dir (if buffer-file-name (file-name-directory buffer-file-name) default-directory)) (buf (eshell))) (if dir (with-current-buffer buf (eshell/cd dir) (eshell-send-input)) (message "Could not switch eshell: buffer is not real file"))))) #+end_src ** WAIT Elfeed :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Elfeed is the perfect RSS feed reader, integrated into Emacs perfectly. I've got a set of feeds that I use for a large variety of stuff, mostly media and entertainment. I've also bound " ar" to elfeed for loading the system. #+begin_src emacs-lisp (use-package elfeed :general (app-leader "r" #'elfeed) (nmmap :keymaps 'elfeed-search-mode-map "gr" #'elfeed-update "s" #'elfeed-search-live-filter "" #'elfeed-search-show-entry) :init (setq elfeed-db-directory (no-littering-expand-var-file-name "elfeed/")) (setq +rss/feed-urls '(("Arch Linux" "https://www.archlinux.org/feeds/news/" News Technology) ("The Onion" "https://www.theonion.com/rss" Social) ("Protesilaos Stavrou" "https://www.youtube.com/@protesilaos" YouTube Technology) ("Tsoding Daily" "https://www.youtube.com/feeds/videos.xml?channel_id=UCrqM0Ym_NbK1fqeQG2VIohg" YouTube Technology) ("Tsoding" "https://www.youtube.com/feeds/videos.xml?channel_id=UCrqM0Ym_NbK1fqeQG2VIohg" YouTube Technology) ("Nexpo" "https://www.youtube.com/feeds/videos.xml?channel_id=UCpFFItkfZz1qz5PpHpqzYBw" YouTube Stories) ("3B1B" "https://www.youtube.com/feeds/videos.xml?channel_id=UCYO_jab_esuFRV4b17AJtAw" YouTube) ("Fredrik Knusden" "https://www.youtube.com/feeds/videos.xml?channel_id=UCbWcXB0PoqOsAvAdfzWMf0w" YouTube Stories) ("Barely Sociable" "https://www.youtube.com/feeds/videos.xml?channel_id=UC9PIn6-XuRKZ5HmYeu46AIw" YouTube Stories) ("Atrocity Guide" "https://www.youtube.com/feeds/videos.xml?channel_id=UCn8OYopT9e8tng-CGEWzfmw" YouTube Stories) ("Hacker News" "https://news.ycombinator.com/rss" Social News Technology) ("Hacker Factor" "https://www.hackerfactor.com/blog/index.php?/feeds/index.rss2" Social))) :config (with-eval-after-load "evil-collection" (evil-collection-elfeed-setup)) (setq elfeed-feeds (cl-map 'list #'(lambda (item) (append (list (nth 1 item)) (cdr (cdr item)))) +rss/feed-urls)) (advice-add 'elfeed-search-show-entry :after #'+elfeed/dispatch-entry) (defun +elfeed/dispatch-entry (entry) "Process each type of entry differently. e.g., you may want to open HN entries in eww." (let ((url (elfeed-entry-link entry))) (pcase url ((pred (string-match-p "https\\:\\/\\/www.youtube.com\\/watch")) (mpv-play-url url)) (_ (eww url)))))) #+end_src ** Magit Magit is *the* git porcelain for Emacs, which perfectly encapsulates the git cli. In this case I just need to setup the bindings for it. As magit will definitely load after evil (as it must be run by a binding, and evil will load after init), I can use evil-collection freely. Also, define an auto insert for commit messages so that I don't need to write everything myself. #+begin_src emacs-lisp (use-package magit :straight t :defer t :display ("magit:.*" (display-buffer-same-window) (inhibit-duplicate-buffer . t)) ("magit-diff:.*" (display-buffer-below-selected)) ("magit-log:.*" (display-buffer-same-window)) :general (leader "g" '(magit-dispatch :which-key "Magit")) (code-leader "b" #'magit-blame) :auto-insert (("COMMIT_EDITMSG" . "Commit skeleton") "" "(" (read-string "Enter feature/module: ") ")" (read-string "Enter simple description: ") "\n\n") :init (setq vc-follow-symlinks t magit-blame-echo-style 'lines magit-copy-revision-abbreviated t) :config (with-eval-after-load "evil" (evil-set-initial-state 'magit-status-mode 'motion)) (with-eval-after-load "evil-collection" (evil-collection-magit-setup))) #+end_src ** IBuffer IBuffer is the dired of buffers: providing the ability to mark buffers, mass rename/delete and just observe stuff. #+begin_src emacs-lisp (use-package ibuffer :defer t :general (buffer-leader "i" #'ibuffer) :config (with-eval-after-load "evil-collection" (evil-collection-ibuffer-setup))) #+end_src ** Proced Emacs has two systems for process management: + proced: a general 'top' like interface which allows general management of linux processes + list-processes: a specific Emacs based system that lists processes spawned by Emacs (similar to a top for Emacs specifically) Core proced config, just a few bindings and evil collection setup. #+begin_src emacs-lisp (use-package proced :defer t :general (app-leader "p" #'proced) (nmap :keymaps 'proced-mode-map "za" #'proced-toggle-auto-update) :display ("\\*Proced\\*" (display-buffer-at-bottom) (window-height . 0.25)) :init (setq proced-auto-update-interval 0.5) :config (with-eval-after-load "evil-collection" (evil-collection-proced-setup))) #+end_src ** Calculator Surprise, surprise Emacs comes with a calculator. Greater surprise, this thing is over powered. It can perform the following (and more): - Matrix calculations - Generalised calculus operations - Equation solvers for n-degree multi-variable polynomials - Embedded mode (check below)! ~calc-mode~ is a calculator system within Emacs that provides a diverse array of mathematical operations. It uses reverse polish notation to do calculations (though there is a standard infix algebraic notation mode). Embedded mode allows computation with the current buffer as the echo area. This basically means I can compute stuff within a buffer without invoking calc directly: $1 + 2\rightarrow_{\text{calc-embed}} 3$. #+begin_src emacs-lisp (use-package calc :defer t :display ("*Calculator*" (display-buffer-at-bottom) (window-height . 0.18)) :general (app-leader "c" #'calc-dispatch) (mode-leader "c" #'calc-embedded) :init (setq calc-algebraic-mode t) :config (with-eval-after-load "evil-collection" (evil-collection-calc-setup))) #+end_src *** WAIT Calctex :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: ~calc-mode~ also has a 3rd party package called ~calctex~. It renders mathematical expressions within calc as if they were rendered in TeX. You can also copy the expressions in their TeX forms, which is pretty useful when writing a paper. I've set a very specific lock on this repository as it's got quite a messy work-tree and this commit seems to work for me given the various TeX utilities installed via Arch. #+begin_src emacs-lisp (use-package calctex :after calc :straight (calctex :type git :host github :repo "johnbcoughlin/calctex") :hook (calc-mode-hook . calctex-mode)) #+end_src ** WAIT Ledger :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: #+begin_src emacs-lisp (use-package ledger-mode :defer t) (use-package evil-ledger :after ledger-mode) #+end_src ** Zone Of course Emacs has a cool screensaver software. #+begin_src emacs-lisp (use-package zone-matrix :straight t :defer t :commands (zone) :general (leader "z" #'zone) :init (setq zone-programs [zone-pgm-drip zone-pgm-drip-fretfully zone-pgm-martini-swan-dive zone-pgm-stress zone-pgm-random-life])) #+end_src ** (Wo)man Man pages are the user manuals for most software on Linux. Really useful when writing code for Un*x systems, though they can be very verbose. 2023-08-17: `Man-notify-method' is the reason the `:display' record doesn't work here. I think it's to do with how Man pages are rendered or something, but very annoying as it's a break from standards! #+begin_src emacs-lisp (use-package man :defer t :init (setq Man-notify-method 'pushy) :display ("^\\*Man.*" (display-buffer-reuse-mode-window display-buffer-same-window)) :general (file-leader "m" #'man) ;; kinda like "find man page" (nmmap :keymaps 'Man-mode-map "RET" #'man-follow)) #+end_src ** WAIT gif-screencast :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Little application that uses =gifsicle= to make essentially videos of Emacs. Useful for demonstrating features. #+begin_src emacs-lisp (use-package gif-screencast :straight t :general (app-leader "x" #'gif-screencast-start-or-stop) :init (setq gif-screencast-output-directory (expand-file-name "~/Media/emacs/"))) #+end_src ** Image-mode Image mode, for viewing images. Supports tons of formats, easy to use and integrates slickly into image-dired. Of course, #+begin_src emacs-lisp (use-package image-mode :defer t :general (nmmap :keymaps 'image-mode-map "+" #'image-increase-size "-" #'image-decrease-size "p" #'image-animate "P" #'image-animate-set-speed "h" #'image-backward-hscroll "j" #'image-next-line "k" #'image-previous-line "l" #'image-forward-hscroll)) #+end_src ** WAIT ERC :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: #+begin_src emacs-lisp (use-package erc :defer t :init (setq erc-server "irc.libera.chat" erc-nick "oreodave" erc-buffer-display "current")) #+end_src ** WAIT MPV :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Basically a porcelain over mpv via the IPC interface. #+begin_src emacs-lisp (use-package mpv :defer t :straight t :config (with-eval-after-load "org" (defun org-mpv-complete-link (&optional arg) (replace-regexp-in-string "file:" "mpv:" (org-link-complete-file arg) t t)) (org-link-set-parameters "mpv" :follow #'mpv-play :complete #'org-mpv-complete-link))) #+end_src * Text modes Standard packages and configurations for text-mode and its derived modes. ** Flyspell Flyspell allows me to quickly spell check text documents. I use flyspell primarily in org mode, as that is my preferred prose writing software, but I also need it in commit messages and so on. So flyspell-mode should be hooked to text-mode. #+begin_src emacs-lisp (use-package flyspell :straight t :defer t :hook (text-mode-hook . flyspell-mode) :general (nmmap :keymaps 'text-mode-map (kbd "M-C") #'flyspell-correct-word-before-point (kbd "M-c") #'flyspell-auto-correct-word) (mode-leader "s" #'flyspell-mode)) #+end_src ** Undo tree Undo tree sits on top of the incredible Emacs undo capabilities. Provides a nice visual for edits and a great way to produce branches of edits. Also allows saving of undo trees, which makes Emacs a quasi version control system in and of itself! The only extra necessary would be describing changes... #+begin_src emacs-lisp (use-package undo-tree :demand t :straight t :general (leader "u" #'undo-tree-visualize) :init (setq undo-tree-auto-save-history t undo-tree-history-directory-alist backup-directory-alist) :config (global-undo-tree-mode)) #+end_src ** Whitespace Deleting whitespace, highlighting when going beyond the 80th character limit, all good stuff. I don't want to highlight whitespace for general mode categories (Lisp shouldn't really have an 80 character limit), so set it for specific modes need the help. #+begin_src emacs-lisp (use-package whitespace :defer t :general (nmmap "M--" #'whitespace-cleanup) (mode-leader "w" #'whitespace-mode) :hook (before-save-hook . whitespace-cleanup) (c-mode-hook . whitespace-mode) (c++-mode-hook . whitespace-mode) (haskell-mode-hook . whitespace-mode) (python-mode-hook . whitespace-mode) (org-mode-hook . whitespace-mode) (text-mode-hook . whitespace-mode) :init (setq whitespace-style '(face empty lines-tail spaces tabs tab-mark trailing newline) whitespace-line-column 80)) #+end_src ** Set auto-fill-mode for all text-modes Auto fill mode automatically newlines text on 80 characters, which looks nice and integrates well with Evil's sentence and paragraph text objects. #+begin_src emacs-lisp (add-hook 'text-mode-hook #'auto-fill-mode) #+end_src ** Show-paren-mode Show parenthesis for Emacs #+begin_src emacs-lisp (add-hook 'prog-mode-hook #'show-paren-mode) #+end_src ** Smartparens Smartparens is a smarter electric-parens, it's much more aware of context and easier to use. #+begin_src emacs-lisp (use-package smartparens :straight t :defer t :hook (prog-mode-hook . smartparens-mode) (text-mode-hook . smartparens-mode) :config (setq sp-highlight-pair-overlay nil sp-highlight-wrap-overlay t sp-highlight-wrap-tag-overlay t) (let ((unless-list '(sp-point-before-word-p sp-point-after-word-p sp-point-before-same-p))) (sp-pair "'" nil :unless unless-list) (sp-pair "\"" nil :unless unless-list)) (sp-local-pair sp-lisp-modes "(" ")" :unless '(:rem sp-point-before-same-p)) (require 'smartparens-config)) #+end_src ** Thesaurus =le-thesaurus= is a great extension for quickly searching up words for synonyms or antonyms. I may need it anywhere so I bind it to all keymaps. Same with dictionary searching. #+begin_src emacs-lisp (use-package le-thesaurus :straight t :defer t :display ("\\*Dictionary\\*" (display-buffer-reuse-window display-buffer-same-window) (reusable-frames . t)) :init (setq dictionary-server "dict.org") :general (search-leader :infix "w" "s" #'le-thesaurus-get-synonyms "a" #'le-thesaurus-get-antonyms "d" #'dictionary-search)) #+end_src * Programming packages Packages that help with programming in general, providing IDE like capabilities. ** Eldoc Eldoc presents documentation to the user upon placing ones cursor upon any symbol. This is very useful when programming as it: - presents the arguments of functions while writing calls for them - presents typing and documentation of variables Eldoc box makes the help buffer a hovering box instead of printing it in the minibuffer. A lot cleaner. #+begin_src emacs-lisp (use-package eldoc :defer t :hook (prog-mode-hook . eldoc-mode) :init (global-eldoc-mode 1) :general (leader "h>" #'eldoc-doc-buffer)) (use-package eldoc-box :straight t :defer t :hook (eldoc-mode-hook . eldoc-box-hover-mode) :init (setq eldoc-box-position-function #'eldoc-box--default-upper-corner-position-function eldoc-box-clear-with-C-g t) :general (leader "h." #'eldoc-box-help-at-point)) #+end_src ** Flycheck Flycheck is the checking system for Emacs. I don't necessarily like having all my code checked all the time, so I haven't added a hook to prog-mode as it would be better for me to decide when I want checking and when I don't. I've added it to C/C++ mode because I use them regularly and flycheck has very little overhead to work there. #+begin_src emacs-lisp (use-package flycheck :straight t :defer t :commands (flycheck-mode flycheck-list-errors) :hook (c-mode-hook . flycheck-mode) (c++-mode-hook . flycheck-mode) :general (mode-leader "f" #'flycheck-mode) (code-leader "x" #'flycheck-list-errors "J" #'flycheck-next-error "K" #'flycheck-previous-error) :display ("\\*Flycheck.*" (display-buffer-at-bottom) (window-height . 0.25)) :init (setq-default flycheck-check-syntax-automatically '(save new-line mode-enabled)) :config (with-eval-after-load "evil-collection" (evil-collection-flycheck-setup))) #+end_src ** Eglot Eglot is package to communicate with LSP servers for better programming capabilities. Interactions with a server provide results to the client, done through JSON. NOTE: Emacs 28.1 comes with better JSON parsing, which makes Eglot much faster. 2023-03-26: I've found Eglot to be useful sometimes, but many of the projects I work on don't require a heavy server setup to efficiently edit and check for errors; Emacs provides a lot of functionality. So by default I've disabled it, using =M-x eglot= to startup the LSP server when I need it. #+begin_src emacs-lisp (use-package eglot :defer t :general (code-leader :keymaps 'eglot-mode-map "f" #'eglot-format "a" #'eglot-code-actions "r" #'eglot-rename "R" #'eglot-reconnect) :init (setq eglot-stay-out-of '(flymake)) :config (add-to-list 'eglot-server-programs '((c++-mode c-mode) "clangd"))) #+end_src *** Flycheck-Eglot By default Eglot uses the integrated flymake package for error reporting. I don't mind flymake, and I think an integrated solution which doesn't rely on external packages is always a great idea. However, I just personally prefer flycheck and it's become part of my mental model when programming. So here's a package which will integrate flycheck into Eglot's error reporting. (Funny but also kind of depressing is this issue in Eglot where someone requested this integration, which caused a bit of a flame war. People are stupid. [[https://github.com/joaotavora/eglot/issues/42][no opinion on flymake]]) #+begin_src emacs-lisp (use-package flycheck-eglot :straight t :after (flycheck eglot) :hook (eglot-managed-mode-hook . flycheck-eglot-mode)) #+end_src ** Indentation By default, turn off tabs and set the tab width to two. #+begin_src emacs-lisp (setq-default indent-tabs-mode nil tab-width 2) #+end_src However, if necessary later, define a function that may activate tabs locally. #+begin_src emacs-lisp (defun +oreo/use-tabs () (interactive) (setq-local indent-tabs-mode t)) #+end_src ** Highlight todo items TODO items are highlighted in org-mode, but not necessarily in every mode. This minor mode highlights all TODO like items via a list of strings to match. It also configures faces to use when highlighting. I hook it to prog-mode. #+begin_src emacs-lisp (use-package hl-todo :straight t :after prog-mode :hook (prog-mode-hook . hl-todo-mode) :init (setq hl-todo-keyword-faces '(("TODO" . "#E50000") ("WIP" . "#ffa500") ("NOTE" . "#00CC00") ("FIXME" . "#d02090")))) #+end_src ** Hide-show mode Turn on ~hs-minor-mode~ for all prog-mode. This provides folds for free. #+begin_src emacs-lisp (use-package hideshow :defer t :hook (prog-mode-hook . hs-minor-mode)) #+end_src ** Aggressive indenting Essentially my dream editing experience: when I type stuff in, try and indent it for me on the fly. Just checkout the [[https://github.com/Malabarba/aggressive-indent-mode][page]], any description I give won't do it justice. #+begin_src emacs-lisp (use-package aggressive-indent :straight t :demand t :config (add-to-list 'aggressive-indent-excluded-modes 'c-mode) (add-to-list 'aggressive-indent-excluded-modes 'c++-mode) (add-to-list 'aggressive-indent-excluded-modes 'cc-mode) (global-aggressive-indent-mode)) #+end_src ** Compilation Colourising the compilation buffer so ANSI colour codes get computed. #+begin_src emacs-lisp (use-package compile :defer t :general (code-leader "j" #'next-error "k" #'previous-error "c" #'compile "C" #'recompile) (nmmap :keymaps 'compilation-mode-map "c" #'recompile) (general-def :keymaps 'compilation-mode-map "g" nil) ;; by default this is recompile :display ("\\*compilation\\*" (display-buffer-reuse-window display-buffer-at-bottom) (reusable-frames . t) (window-height . 0.25)) :config (defun +compile/colourise () "Colourise the emacs compilation buffer." (interactive) (let ((inhibit-read-only t)) (ansi-color-apply-on-region (point-min) (point-max)))) (add-hook 'compilation-filter-hook #'+compile/colourise)) #+end_src ** xref Find definitions, references and general objects using tags without external packages. Provided by default in Emacs and just requires a way of generating a =TAGS= file for your project. Helps with minimal setups for programming without heavier packages like [[*Eglot][Eglot]]. #+begin_src emacs-lisp (use-package xref :defer t :display ("\\*xref\\*" (display-buffer-at-bottom) (inhibit-duplicate-buffer . t) (window-height . 0.25)) :general (code-leader "t" '(nil :which-key "Tags")) (code-leader :infix "t" "t" #'xref-find-apropos "d" #'xref-find-definitions "r" #'xref-find-references) (nmmap :keymaps 'xref--xref-buffer-mode-map "RET" #'xref-goto-xref "J" #'xref-next-line "K" #'xref-prev-line "g" #'xref-revert-buffer "q" #'quit-window)) #+end_src ** Project.el An inbuilt solution for creating and managing projects that doesn't require a dependency. Where possible we should try to use Emacs defaults (admittedly this is a philosophy I've only recently adopted) so when setting up a new computer it takes a bit less time. Here I write a TAGS command, mimicking projectile's one, so I can quickly generate them in C/C++ projects. #+begin_src emacs-lisp (use-package project :defer t :general (general-def :keymaps 'project-prefix-map "R" #'+project/generate-tags) :config (defun +project/generate-tags () (interactive) (let ((project (project-current))) (if (not project) (message "+project/generate-tags: Not in project.") (let ((tags-file (concat (project-root project) "TAGS")) (files (format "%s" (project-files project)))) (set-process-sentinel (start-process-shell-command "PROJECT-GENERATE-TAGS" "*gen-tags*" (format "ctags -Re -f %s %s" tags-file (substring files 1 (- (length files) 1)))) (lambda (p event) (when (string= event "finished\n") (message "Finished generating tags!"))))))))) #+end_src ** WAIT Projectile :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Projectile is a project management package which integrates with Emacs very well. It essentially provides alternative Emacs commands scoped to the current 'project', based on differing signs that a directory is a 'project'. #+begin_src emacs-lisp (use-package projectile :hook (emacs-startup-hook . projectile-mode) :general (general-def :keymaps 'projectile-command-map "t" #'projectile-test-project "r" #'projectile-run-project "q" #'projectile-replace-regexp) (leader "p" '(projectile-command-map :which-key "Projectile")) :init (setq projectile-tags-command "ctags -Re -f \"%s\" %s \"%s\"" projectile-enable-caching t)) #+end_src *** Counsel projectile Counsel integration for projectile commands, very nice. #+begin_src emacs-lisp (use-package counsel-projectile :after (projectile counsel) :config (counsel-projectile-mode +1)) #+end_src ** devdocs #+begin_src emacs-lisp (use-package devdocs :straight t :defer t :general (nmmap "K" #'devdocs-lookup)) #+end_src * Org mode 2023-03-30: finally decided to give org mode its own section. Org is, at its most basic, a markup language. Files use the ".org" extension and use =org-mode= to write text, with the ability to export to a few formats, all within Emacs. Some other features include: + A complete spreadsheet system, with formulas (including [[file:app.org::*Calculator][calc-mode]] integration) + Evaluation of code blocks, even using the results of them in exports (to, say, a $\LaTeX$ or HTML document) + This includes exporting code blocks to a code file. All the emacs-lisp code blocks in this file are compiled to =config.el= ([[file:elisp/literate.el][literate]]) + Complete calendar/todo system with deadlines, scheduling and repeaters + Export to a variety of formats or make your own export engine using the org AST! + Writing $\LaTeX$ inline, with the ability to render the fragments on demand ** Org Essentials Org has a ton of settings to tweak, which change your experience quite a bit. Here are mine, but this took a lot of just reading other people's configurations and testing. I don't do a good job of explaining how this works in all honesty, but it works well for me so I'm not very bothered. + By default =~/Text= is my directory for text files. I actually have a repository that manages this directory for agenda files and other documents + Indentation in file should not be allowed, i.e. text indentation, as that forces other editors to read it a certain way as well. It's obtrusive hence it's off. + Org startup indented is on by default as most documents do benefit from the indentation, but I do turn it off for some files via ~#+startup:noindent~ + When opening an org document there can be a lot of headings, so I set folding to just content + Org documents can also have a lot of latex previews, which make opening some after a while a massive hassle. If I want to see the preview, I'll do it myself, so turn it off. + Org manages windowing itself, to some extent, so I set those options to be as unobtrusive as possible + Load languages I use in =src= blocks in org-mode (Emacs-lisp for this configuration, C and Python) #+begin_src emacs-lisp (use-package org :straight t :defer t :init (setq org-directory "~/Text" org-adapt-indentation nil org-indent-mode nil org-startup-indented t org-startup-folded 'content org-startup-with-latex-preview nil org-imenu-depth 10 org-src-window-setup 'current-window org-indirect-buffer-display 'current-window org-link-frame-setup '((vm . vm-visit-folder-other-frame) (vm-imap . vm-visit-imap-folder-other-frame) (file . find-file)) org-babel-load-languages '((emacs-lisp . t) (lisp . t) (shell . t)))) #+end_src ** Org Latex Org mode has deep integration with latex, can export to PDF and even display latex fragments in the document directly. I setup the pdf-process, code listing options via minted and the format options for latex fragments. #+begin_src emacs-lisp (use-package org :straight t :defer t :init (setq org-format-latex-options '(:foreground default :background default :scale 2 :html-foreground "Black" :html-background "Transparent" :html-scale 1.0 :matchers ("begin" "$1" "$" "$$" "\\(" "\\[")) org-latex-src-block-backend 'minted org-latex-minted-langs '((emacs-lisp "common-lisp") (ledger "text") (cc "c++") (cperl "perl") (shell-script "bash") (caml "ocaml")) org-latex-packages-alist '(("" "minted")) org-latex-pdf-process (list (concat "latexmk -f -bibtex -pdf " "-shell-escape -%latex -interaction=nonstopmode " "-output-directory=%o %f")) org-latex-minted-options '(("style" "colorful") ("linenos") ("frame" "single") ("mathescape") ("fontfamily" "courier") ("samepage" "false") ("breaklines" "true") ("breakanywhere" "true")))) #+end_src ** Org Core Variables Tons of variables for org-mode, including a ton of latex ones. Can't really explain because it sets up quite a lot of local stuff. Also I copy pasted the majority of this, tweaking it till it felt good. Doom Emacs was very helpful here. #+begin_src emacs-lisp (use-package org :straight t :defer t :init (setq org-edit-src-content-indentation 0 org-goto-interface 'outline org-imenu-depth 10 org-export-backends '(ascii html latex odt icalendar) org-eldoc-breadcrumb-separator " → " org-enforce-todo-dependencies t org-fontify-quote-and-verse-blocks t org-fontify-whole-heading-line t org-footnote-auto-label t org-hide-leading-stars t org-hide-emphasis-markers nil org-image-actual-width nil org-priority-faces '((?A . error) (?B . warning) (?C . success)) org-link-descriptive nil org-tags-column 0 org-todo-keywords '((sequence "TODO" "WIP" "DONE") (sequence "PROJ" "WAIT" "COMPLETE")) org-use-sub-superscripts '{})) #+end_src ** Org Core Functionality Hooks, prettify-symbols and records for auto insertion. #+begin_src emacs-lisp (use-package org :straight t :defer t :hook (org-mode-hook . prettify-symbols-mode) :display ("\\*Org Src.*" (display-buffer-same-window)) :pretty (org-mode-hook ("#+begin_src" . "≫") ("#+end_src" . "≪")) :auto-insert (("\\.org\\'" . "Org skeleton") "Enter title: " "#+title: " str | (buffer-file-name) "\n" "#+author: " (read-string "Enter author: ") | user-full-name "\n" "#+description: " (read-string "Enter description: ") | "Description" "\n" "#+date: " (format-time-string "%Y-%m-%d" (current-time)) "\n" "* " _)) #+end_src ** Org Core Bindings Some bindings for org mode. #+begin_src emacs-lisp (use-package org :straight t :defer t :general (file-leader "l" #'org-store-link "i" #'org-insert-last-stored-link) (code-leader :keymaps 'emacs-lisp-mode-map "D" #'org-babel-detangle) (local-leader :keymaps 'org-mode-map "l" '(nil :which-key "Links") "'" '(nil :which-key "Tables") "c" '(nil :which-key "Clocks") "r" #'org-refile "d" #'org-date-from-calendar "t" #'org-todo "," #'org-priority "T" #'org-babel-tangle "i" #'org-insert-structure-template "p" #'org-latex-preview "s" #'org-property-action "e" #'org-export-dispatch "o" #'org-edit-special) (local-leader :keymaps 'org-mode-map :infix "l" "i" #'org-insert-link "l" #'org-open-at-point "f" #'org-footnote-action) (local-leader :keymaps 'org-mode-map :infix "'" "a" #'org-table-align "c" #'org-table-create "f" #'org-table-edit-formulas "t" #'org-table-toggle-coordinate-overlays "s" #'org-table-sum "e" #'org-table-calc-current-TBLFM "E" #'org-table-eval-formula)) #+end_src ** Searching org files The default ~imenu~ support for Org-mode is god-awful. ~Imenu~ for org-mode should show me a list of headings and provide a completing-read interface to search them. [[file:core.org::*Counsel][Counsel]] has me covered for this as I can just provide it a regex as an initial prompt to narrow the candidates down to just the headings then let the user go from there. I use ~swiper~ when considering just the local file (a la ~imenu~) and ~counsel-rg~ to search multiple org-files. The cherry on top is ~+org/search-config-headings~ which searches the org files in ~user-emacs-directory~ and provides the headings for them. This allows me to search my configuration pretty quickly. #+begin_src emacs-lisp (use-package org :straight t :after counsel :config (defun +org/swiper-goto () (interactive) (swiper "^\\* ")) (defun +org/search-headings () "Searches directory (of buffer) for org headings via counsel-rg" (interactive) (counsel-rg "^\\* " (file-name-directory (buffer-file-name)))) (defun +org/search-config-headings () "Searches USER-EMACS-DIRECTORY for org headings via counsel-rg" (interactive) (counsel-rg "^\\* " (substring user-emacs-directory 0 (- (length user-emacs-directory) 1)) "--max-depth=1")) :general (file-leader "p" #'+org/search-config-headings) (search-leader :keymaps 'org-mode-map "I" #'+org/search-headings) (nmmap :keymaps 'org-mode-map [remap imenu] #'+org/swiper-goto)) #+end_src ** Org Agenda Org agenda provides a nice viewing for schedules. With org mode it's a very tidy way to manage your time. #+begin_src emacs-lisp (use-package org-agenda :after org :init (defconst +org/agenda-root "~/Text" "Root directory for all agenda files") (setq org-agenda-files (list (expand-file-name +org/agenda-root)) org-agenda-window-setup 'current-window org-agenda-skip-deadline-prewarning-if-scheduled t org-agenda-skip-scheduled-if-done t org-agenda-skip-deadline-if-done t org-agenda-start-with-entry-text-mode nil) :config (evil-set-initial-state 'org-agenda-mode 'normal) :general (file-leader "a" `(,(proc (interactive) (find-file (completing-read "Enter directory: " org-agenda-files nil t))) :which-key "Open agenda directory")) (app-leader "a" #'org-agenda) (nmmap :keymaps 'org-agenda-mode-map "zd" #'org-agenda-day-view "zw" #'org-agenda-week-view "zm" #'org-agenda-month-view "gd" #'org-agenda-goto-date "RET" #'org-agenda-switch-to "J" #'org-agenda-later "K" #'org-agenda-earlier "t" #'org-agenda-todo "." #'org-agenda-goto-today "," #'org-agenda-goto-date "q" #'org-agenda-quit "r" #'org-agenda-redo)) #+end_src ** Org capture 2024-04-24: I actually need to clean this up, in particular explain what org-capture does. #+begin_src emacs-lisp (use-package org-capture :after org :init (setq org-capture-templates '(("t" "A todo" entry (file "") "* TODO %? %T %a")) org-default-notes-file (concat org-directory "/todo.org")) :general (file-leader "w" #'org-capture)) #+end_src ** Org clock-in Org provides a nice timekeeping system that allows for managing how much time is taken per task. It even has an extensive reporting system to see how much time you spend on specific tasks or overall. #+begin_src emacs-lisp (use-package org-clock :after org :init (defvar +org/clock-out-toggle-report nil "Non-nil means update the first clock report in the file every time a clock out occurs.") :config (advice-add #'org-clock-out :after (proc (interactive) (if +org/clock-out-toggle-report (org-clock-report t)))) :general (local-leader :keymaps 'org-mode-map :infix "c" "d" #'org-clock-display "c" #'org-clock-in "o" #'org-clock-out "r" #'org-clock-report "t" (proc (interactive) (setq-local +org/clock-out-toggle-report (not +org/clock-out-toggle-report))))) #+end_src ** Org compile to PDF on save If ~+org/compile-to-pdf-on-save-p~ is non-nil, then compile to \(\LaTeX\) and run an async process to compile it to a PDF. Doesn't make Emacs hang (like ~org-latex-export-to-pdf~) and doesn't randomly crash (like the async handler for org-export). Works really well with ~pdf-view-mode~. #+begin_src emacs-lisp (use-package org :defer t :init (defvar +org/compile-to-pdf-on-save-p nil "Non-nil to activate compile functionality.") :general (local-leader :keymaps 'org-mode-map "C" (proc (interactive) (if (+org/compile-to-pdf-on-save-f) (setq-local +org/compile-to-pdf-on-save-p nil) (setq-local +org/compile-to-pdf-on-save-p t)))) :config (+oreo/create-auto-save (and (eq major-mode 'org-mode) +org/compile-to-pdf-on-save-p) (start-process-shell-command "" "*pdflatex*" (concat "pdflatex -shell-escape " (org-latex-export-to-latex))))) #+end_src ** WAIT Org ref :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: For bibliographic stuff in $\LaTeX$ export. #+begin_src emacs-lisp (use-package org-ref :straight t :defer t :init (setq bibtex-files '("~/Text/bibliography.bib") bibtex-completion-bibliography '("~/Text/bibliography.bib") bibtex-completion-additional-search-fields '(keywords))) #+end_src *** Org ref ivy integration Org ref requires ivy-bibtex to work properly with ivy, so we need to set that up as well #+begin_src emacs-lisp (use-package ivy-bibtex :straight t :after org-ref :config (require 'org-ref-ivy)) #+end_src ** Org message Org message allows for the use of org mode when composing mails, generating HTML multipart emails. This integrates the WYSIWYG experience with mail in Emacs while also providing powerful text features with basically no learning curve (as long as you've already learnt the basics of org). #+begin_src emacs-lisp (use-package org-msg :straight t :defer t :hook (message-mode-hook . org-msg-mode) (notmuch-message-mode-hook . org-msg-mode) :config (setq org-msg-options "html-postamble:nil H:5 num:nil ^:{} toc:nil author:nil email:nil \\n:t tex:dvipng" org-msg-greeting-name-limit 3) (add-to-list 'org-msg-enforce-css '(img latex-fragment-inline ((transform . ,(format "translateY(-1px) scale(%.3f)" (/ 1.0 (if (boundp 'preview-scale) preview-scale 1.4)))) (margin . "0 -0.35em"))))) #+end_src ** Org for evil Evil org for some nice bindings. #+begin_src emacs-lisp (use-package evil-org :straight t :defer t :hook (org-mode-hook . evil-org-mode)) #+end_src ** Org reveal Org reveal allows one to export org files as HTML presentations via reveal.js. Pretty nifty and it's easy to use. #+begin_src emacs-lisp (use-package ox-reveal :straight t :defer t :init (setq org-reveal-root "https://cdn.jsdelivr.net/npm/reveal.js" org-reveal-theme "sky")) #+end_src ** WAIT Org fragtog :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Toggle latex fragments in org mode so you get fancy maths symbols. I use latex a bit in org mode as it is the premier way of getting mathematical symbols rendered, but org mode > latex. Delimited environments are aplenty, escaped brackets and dollar signs are my favourite. Here's a snippet: $\int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}$. [2023-09-10 Sun] Emacs 29 complains constantly about this, probably because this isn't implemented that well. Regardless it wasn't that necessary anyway, just a nice feature to have. #+begin_src emacs-lisp (use-package org-fragtog :hook (org-mode-hook . org-fragtog-mode)) #+end_src ** Org superstar Org superstar adds unicode symbols for headers, much better than the default asterisks. #+begin_src emacs-lisp (use-package org-superstar :straight t :defer t :hook (org-mode-hook . org-superstar-mode)) #+end_src * Languages For a variety of (programming) languages Emacs comes with default modes but this configures them as well as pulls any modes Emacs doesn't come with. I have a [[file:lang.org][separate file]] for this configuration as it's quite large. #+begin_src emacs-lisp ;;(load-file (concat user-emacs-directory "lang.el")) #+end_src ** Makefile Defines an auto-insert for Makefiles. Assumes C but it's very easy to change it for C++. #+begin_src emacs-lisp (use-package make-mode :defer t :auto-insert (("[mM]akefile\\'" . "Makefile skeleton") "" "CC=gcc GFLAGS=-Wall -Wextra -Werror -Wswitch-enum -std=c11 DFLAGS=-ggdb -fsanitize=address -fsanitize=undefined RFLAGS=-O3 ifdef RELEASE CFLAGS=$(GFLAGS) $(RFLAGS) else CFLAGS=$(GFLAGS) $(DFLAGS) endif LIBS= ARGS= OUT=main.out SRC=src DIST=build CODE=$(addprefix $(SRC)/, ) # add source files here OBJECTS=$(CODE:$(SRC)/%.c=$(DIST)/%.o) DEPDIR:=$(DIST)/dependencies DEPFLAGS=-MT $@ -MMD -MP -MF DEPS:=$(CODE:$(SRC)/%.c=$(DEPDIR):%.d) $(DEPDIR)/main.d .PHONY: all all: $(OUT) $(OUT): $(DIST)/$(OUT) $(DIST)/$(OUT): $(OBJECTS) $(DIST)/main.o | $(DIST) $(CC) $(CFLAGS) $^ -o $@ $(LIBS) $(DIST)/%.o: $(SRC)/%.c | $(DIST) $(DEPDIR) $(CC) $(CFLAGS) $(DEPFLAGS) $(DEPDIR)/$*.d -c $< -o $@ $(LIBS) .PHONY: run run: $(DIST)/$(OUT) ./$^ $(ARGS) .PHONY: clean: rm -rfv $(DIST)/* $(DIST): mkdir -p $(DIST) $(DEPDIR): mkdir -p $(DEPDIR) -include $(DEPS) " _)) #+end_src ** PDF I use PDFs mostly for reading reports or papers. Though Emacs isn't my preferred application for viewing PDFs (I highly recommend [[https://pwmt.org/projects/zathura/][Zathura]]), similar to most things with Emacs, having a PDF viewer builtin can be a very useful asset. For example if I were editing an org document which I was eventually compiling into a PDF, my workflow would be much smoother with a PDF viewer within Emacs that I can open on another pane. *** WAIT PDF tools :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: ~pdf-tools~ provides the necessary functionality for viewing PDFs. There is no proper PDF viewing without this package. ~evil-collection~ provides a setup for this mode, so use that. #+begin_src emacs-lisp (use-package pdf-tools :mode ("\\.[pP][dD][fF]\\'" . pdf-view-mode) :straight t :display ("^.*pdf$" (display-buffer-same-window) (inhibit-duplicate-buffer . t)) :config (pdf-tools-install-noverify) (with-eval-after-load "evil-collection" (evil-collection-pdf-setup))) #+end_src *** WAIT PDF grep :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: PDF grep is a Linux tool that allows for searches against the text inside of PDFs similar to standard grep. This cannot be performed by standard grep due to how PDFs are encoded; they are not a clear text format. #+begin_src emacs-lisp (use-package pdfgrep :after pdf-tools :hook (pdf-view-mode-hook . pdfgrep-mode) :general (nmap :keymaps 'pdf-view-mode-map "M-g" #'pdfgrep)) #+end_src ** WAIT SQL :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: The default SQL package provides support for connecting to common database types (sqlite, mysql, etc) for auto completion and query execution. I don't use SQL currently but whenever I need it it's there. #+begin_src emacs-lisp (use-package sql :defer t :init (setq sql-display-sqli-buffer-function nil)) #+end_src ** WAIT Ada :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Check out [[file:elisp/ada-mode.el][ada-mode]], my custom ~ada-mode~ that replaces the default one. This mode just colourises stuff, and uses eglot and a language server to do the hard work. #+begin_src emacs-lisp (use-package ada-mode :load-path "elisp/" :defer t :config (with-eval-after-load "eglot" (add-hook 'ada-mode-hook #'eglot))) #+end_src ** NHexl Hexl-mode is the inbuilt package within Emacs to edit hex and binary format buffers. There are a few problems with hexl-mode though, including an annoying prompt on /revert-buffer/. Thus, nhexl-mode! It comes with a few other improvements. Check out the [[https://elpa.gnu.org/packages/nhexl-mode.html][page]] yourself. #+begin_src emacs-lisp (use-package nhexl-mode :straight t :defer t :mode ("\\.bin" "\\.out")) #+end_src ** C/C++ Setup for C and C++ modes, using Emacs' default package: cc-mode. *** cc-mode Tons of stuff, namely: + ~auto-fill-mode~ for 80 char limit + Some keybindings to make evil statement movement is easy + Lots of pretty symbols + Indenting options and a nice (for me) code style for C (though aggressive indent screws with this a bit) + Auto inserts to get a C file going #+begin_src emacs-lisp (use-package cc-mode :defer t :hook (c-mode-hook . auto-fill-mode) (c++-mode-hook . auto-fill-mode) :general (:keymaps '(c-mode-map c++-mode-map) :states '(normal motion visual) "(" #'c-beginning-of-statement ")" #'c-end-of-statement) :pretty (c-mode-hook ("puts" . "φ") ("fputs" . "ϕ") ("printf" . "ω") ("fprintf" . "Ω") ("NULL" . "Ø") ("true" . "⊨") ("false" . "⊭") ("!" . "¬") ("&&" . "∧") ("||" . "∨") ("for" . "∀") ("return" . "⟼")) (c++-mode-hook ("nullptr" . "Ø") ("string" . "𝕊") ("vector" . "ℓ") ("puts" . "φ") ("fputs" . "ϕ") ("printf" . "ω") ("fprintf" . "Ω") ("NULL" . "Ø") ("true" . "⊨") ("false" . "⊭") ("!" . "¬") ("&&" . "∧") ("||" . "∨") ("for" . "∀") ("return" . "⟼")) :init (setq-default c-basic-offset 2) (setq-default c-auto-newline nil) (setq-default c-default-style '((other . "user"))) (defun +cc/copyright-notice () (let* ((lines (split-string (+license/copyright-notice) "\n")) (copyright-line (car lines)) (rest (cdr lines))) (concat "* " copyright-line "\n" (mapconcat #'(lambda (x) (if (string= x "") "" (concat " * " x))) rest "\n")))) :auto-insert (("\\.c\\'" . "C skeleton") "" "/" (+cc/copyright-notice) "\n\n" " * Created: " (format-time-string "%Y-%m-%d") "\n" " * Author: " user-full-name "\n" " * Description: " _ "\n" " */\n" "\n") (("\\.cpp\\'" "C++ skeleton") "" "/" (+cc/copyright-notice) "\n\n" " * Created: " (format-time-string "%Y-%m-%d") "\n" " * Author: " user-full-name "\n" " * Description: " _ "\n" " */\n" "\n") (("\\.\\([Hh]\\|hh\\|hpp\\|hxx\\|h\\+\\+\\)\\'" . "C / C++ header") (replace-regexp-in-string "[^A-Z0-9]" "_" (string-replace "+" "P" (upcase (file-name-nondirectory buffer-file-name)))) "/" (+cc/copyright-notice) "\n\n" " * Created: " (format-time-string "%Y-%m-%d") "\n" " * Author: " user-full-name "\n" " * Description: " _ "\n" " */\n\n" "#ifndef " str n "#define " str "\n\n" "\n\n#endif") :config (c-add-style "user" '((c-basic-offset . 2) (c-comment-only-line-offset . 0) (c-hanging-braces-alist (brace-list-open) (brace-entry-open) (substatement-open after) (block-close . c-snug-do-while) (arglist-cont-nonempty)) (c-cleanup-list brace-else-brace) (c-offsets-alist (statement-block-intro . +) (substatement-open . 0) (access-label . -) (inline-open . 0) (label . 0) (statement-cont . +))))) #+end_src *** Clang format Clang format comes inbuilt with clang, so download that before using this. Formats C/C++ files depending on a format (checkout the Clang format [[file:~/Dotfiles/ClangFormat/.clang-format][config file]] in my dotfiles). #+begin_src emacs-lisp (use-package clang-format :load-path "/usr/share/clang/" :defer t :after cc-mode :commands (+code/clang-format-region-or-buffer clang-format-mode) ;;; 2024-04-24: disabled as it's annoying on projects where a ;;; .clang-format isn't defined. Furthermore, does it make sense ;;; for *every* file you open and edit to have a format function run ;;; right after? seems a bit slow. ;; :hook ;; (c-mode-hook . clang-format-mode) ;; (c++-mode-hook . clang-format-mode) :general (code-leader :keymaps '(c-mode-map c++-mode-map) "f" #'+code/clang-format-region-or-buffer) :config (define-minor-mode clang-format-mode "On save formats the current buffer via clang-format." :lighter nil (let ((save-func (proc (interactive) (clang-format-buffer)))) (if clang-format-mode (add-hook 'after-save-hook save-func nil t) (remove-hook 'after-save-hook save-func t)))) (defun +code/clang-format-region-or-buffer () (interactive) (if (mark) (clang-format-region (region-beginning) (region-end)) (clang-format-buffer)))) #+end_src *** cc org babel To ensure org-babel executes language blocks of C/C++, I need to load it as an option in ~org-babel-load-languages~. #+begin_src emacs-lisp (use-package org :after cc-mode :init (org-babel-do-load-languages 'org-babel-load-languages '((C . t)))) #+end_src ** WAIT D :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: D is a systems level programming language with C-style syntax. I think it has some interesting ideas such as a toggleable garbage collector. Here I just install the D-mode package, enable ~org-babel~ execution of d-mode blocks and alias ~D-mode~ with ~d-mode~. #+begin_src emacs-lisp (use-package d-mode :defer t :straight t :config (fset 'D-mode 'd-mode) (with-eval-after-load "org-mode" (setf (alist-get 'd org-babel-load-languages) t))) #+end_src ** Rust #+begin_src emacs-lisp (use-package rust-mode :straight t :defer t :general (code-leader :keymaps 'rust-mode-map "f" #'rust-format-buffer) (local-leader :keymaps 'rust-mode-map "c" #'rust-run-clippy) :init (setq rust-format-on-save t) (with-eval-after-load "eglot" (add-to-list 'eglot-server-programs '(rust-mode "rust-analyzer")))) #+end_src ** WAIT Racket :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: A scheme with lots of stuff inside it. Using it for a language design book so it's useful to have some Emacs binds for it. #+begin_src emacs-lisp (use-package racket-mode :straight t :hook (racket-mode-hook . racket-xp-mode) :display ("\\*Racket.*" (display-buffer-at-bottom) (window-height . 0.25)) :init (setq racket-documentation-search-location 'local) :general (nmap :keymaps 'racket-describe-mode-map "q" #'quit-window) (nmap :keymaps 'racket-mode-map "gr" #'racket-eval-last-sexp) (local-leader :keymaps '(racket-mode-map racket-repl-mode-map) "d" #'racket-repl-describe) (local-leader :keymaps 'racket-mode-map "r" #'racket-run "i" #'racket-repl "e" #'racket-send-definition "sr" #'racket-send-region "sd" #'racket-send-definition)) #+end_src ** WAIT CSharp :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: Haven't used C# in a while, but Emacs is alright for it with omnisharp. #+begin_src emacs-lisp (use-package csharp-mode :defer t :pretty (csharp-mode-hook ("null" . "∅") ("string" . "𝕊") ("List" . "ℓ") ("WriteLine" . "φ") ("Write" . "ω") ("true" . "⊨") ("false" . "⊭") ("!" . "¬") ("&&" . "∧") ("||" . "∨") ("for" . "∀") ("return" . "⟼"))) #+end_src ** WAIT Java :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: I kinda dislike Java, but if necessary I will code in it. Just setup a style and some pretty symbols. You can use LSP to get cooler features to be fair. #+begin_src emacs-lisp (use-package ob-java :defer t :pretty (java-mode-hook ("println" . "φ") ("printf" . "ω") ("null" . "Ø") ("true" . "⊨") ("false" . "⊭") ("!" . "¬") ("&&" . "∧") ("||" . "∨") ("for" . "∀") ("return" . "⟼")) :config (with-eval-after-load "cc-mode" (c-add-style "java" '((c-basic-offset . 4) (c-comment-only-line-offset 0 . 0) (c-offsets-alist (inline-open . 0) (topmost-intro-cont . +) (statement-block-intro . +) (knr-argdecl-intro . 5) (substatement-open . 0) (substatement-label . +) (label . +) (statement-case-open . +) (statement-cont . +) (arglist-intro . c-lineup-arglist-intro-after-paren) (arglist-close . c-lineup-arglist) (brace-list-intro first c-lineup-2nd-brace-entry-in-arglist c-lineup-class-decl-init-+ +) (access-label . 0) (inher-cont . c-lineup-java-inher) (func-decl-cont . c-lineup-java-throws)))) (add-to-list 'c-default-style '(java-mode . "java"))) (with-eval-after-load "abbrev" (define-abbrev-table 'java-mode-abbrev-table nil) (add-hook 'java-mode-hook (proc (setq-local local-abbrev-table java-mode-abbrev-table))))) #+end_src ** Haskell Haskell is a static lazy functional programming language (what a mouthful). It's quite a beautiful language and really learning it will change the way you think about programming. However, my preferred functional language is still unfortunately Lisp so no extra brownie points there. Here I configure the REPL for Haskell via the ~haskell-interactive-mode~. I also load my custom package [[file:elisp/haskell-multiedit.el][haskell-multiedit]] which allows a user to create temporary ~haskell-mode~ buffers that, upon completion, will run in the REPL. Even easier than making your own buffer. #+begin_src emacs-lisp (use-package haskell-mode :straight t :defer t :hook (haskell-mode-hook . haskell-indentation-mode) (haskell-mode-hook . interactive-haskell-mode) :custom (haskell-interactive-prompt "[λ] ") (haskell-interactive-prompt-cont "{λ} ") (haskell-interactive-popup-errors nil) (haskell-stylish-on-save nil) (haskell-process-type 'auto) :general (shell-leader "h" #'haskell-interactive-bring) (local-leader :keymaps 'haskell-mode-map "l" #'haskell-process-load-or-reload "t" #'haskell-process-do-type) (local-leader :keymaps 'haskell-interactive-mode-map "c" #'haskell-interactive-mode-clear) (imap :keymaps 'haskell-interactive-mode-map "M-k" #'haskell-interactive-mode-history-previous "M-j" #'haskell-interactive-mode-history-next) :display ("\\*haskell.**\\*" (display-buffer-at-bottom) (window-height . 0.25)) :config (load (concat user-emacs-directory "elisp/haskell-multiedit.el"))) #+end_src ** Python Works well for python. If you have ~pyls~ it should be on your path, so just run eglot if you need. But an LSP server is not necessary for a lot of my time in python. Here I also setup org-babel for python source code blocks. #+begin_src emacs-lisp (use-package python :defer t :pretty (python-mode-hook ("None" . "Ø") ("list" . "ℓ") ("List" . "ℓ") ("str" . "𝕊") ("True" . "⊨") ("False" . "⊭") ("!" . "¬") ("&&" . "∧") ("||" . "∨") ("for" . "∀") ("print" . "φ") ("lambda" . "λ") ("return" . "⟼") ("yield" . "⟻")) :init (setq python-indent-offset 4) :config (with-eval-after-load "org-mode" (setf (alist-get 'python org-babel-load-languages) t))) #+end_src *** Python shell Setup for python shell, including a toggle option #+begin_src emacs-lisp (use-package python :defer t :commands +python/toggle-repl :general (shell-leader "p" #'run-python) :display ("\\*Python\\*" (display-buffer-at-bottom) (window-height . 0.25))) #+end_src ** YAML YAML is a data language which is useful for config files. #+begin_src emacs-lisp (use-package yaml-mode :straight t) #+end_src ** HTML/CSS/JS Firstly, web mode for consistent colouring of syntax. #+begin_src emacs-lisp (use-package web-mode :straight t :defer t :mode ("\\.html" . web-mode) :mode ("\\.js" . web-mode) :mode ("\\.css" . web-mode) :custom ((web-mode-code-indent-offset 2) (web-mode-markup-indent-offset 2) (web-mode-css-indent-offset 2))) #+end_src *** Emmet Emmet for super speed code writing. #+begin_src emacs-lisp (use-package emmet-mode :straight t :hook (web-mode-hook . emmet-mode) :general (imap :keymaps 'emmet-mode-keymap "TAB" #'emmet-expand-line "M-j" #'emmet-next-edit-point "M-k" #'emmet-prev-edit-point)) #+end_src *** HTML Auto insert #+begin_src emacs-lisp (use-package web-mode :defer t :auto-insert (("\\.html\\'" . "HTML Skeleton") "" " "(read-string "Enter title: ") | """ " _ " ")) #+end_src *** WAIT Typescript :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: A child language of javascript which compiles to it. #+begin_src emacs-lisp (use-package typescript-mode :straight t :defer t :init (setq typescript-indent-level 2)) #+end_src ** Common Lisp Common Lisp is a dialect of Lisp, the most /common/ one around. Emacs comes with builtin Lisp support of course, but a REPL would be nice. *** WAIT Sly Enter /SLY/. Sly is a fork of /SLIME/ and is *mandatory* for lisp development on Emacs. #+begin_src emacs-lisp (use-package sly :defer t :straight t :init (setq inferior-lisp-program "sbcl") :display ("\\*sly-db" (display-buffer-at-bottom) (window-height . 0.5)) ("\\*sly-" (display-buffer-at-bottom) (window-height . 0.25)) :config (evil-set-initial-state 'sly-db-mode 'emacs) (with-eval-after-load "org" (setq-default org-babel-lisp-eval-fn #'sly-eval)) (with-eval-after-load "company" (add-hook 'sly-mrepl-hook #'company-mode)) :general (shell-leader "s" #'sly-mrepl) (nmap :keymaps '(lisp-mode-map sly-mrepl-mode-map) "gr" #'sly-eval-buffer "gd" #'sly-edit-definition "gR" #'sly-who-calls) (local-leader :keymaps '(lisp-mode-map sly-mrepl-mode-map) "s" #'+shell/toggle-sly "c" #'sly-compile-file "a" #'sly-apropos "d" #'sly-describe-symbol "D" #'sly-documentation-lookup "S" #'sly-mrepl-sync "E" #'sly-eval-defun) (local-leader :keymaps 'lisp-mode-map :infix "e" "b" #'sly-eval-buffer "e" #'sly-eval-last-expression "f" #'sly-eval-defun "r" #'sly-eval-region) (nmap :keymaps 'sly-inspector-mode-map "q" #'sly-inspector-quit)) #+end_src *** Emacs lisp #+begin_src emacs-lisp (use-package elisp-mode :defer t :pretty (lisp-mode-hook ("lambda" . "λ") ("t" . "⊨") ("nil" . "Ø") ("and" . "∧") ("or" . "∨") ("defun" . "ƒ") ("for" . "∀") ("mapc" . "∀") ("mapcar" . "∀")) (emacs-lisp-mode-hook ("lambda" . "λ") ("t" . "⊨") ("nil" . "Ø") ("and" . "∧") ("or" . "∨") ("defun" . "ƒ") ("for" . "∀") ("mapc" . "∀") ("mapcar" . "∀")) :general (:states '(normal motion visual) :keymaps '(emacs-lisp-mode-map lisp-mode-map) ")" #'sp-next-sexp "(" #'sp-previous-sexp) (nmmap :keymaps '(emacs-lisp-mode-map lisp-interaction-mode-map) "gr" #'eval-last-sexp) (vmap :keymaps '(emacs-lisp-mode-map lisp-interaction-mode-map) "gr" #'eval-region)) #+end_src *** WIP Hydra like Lispy :PROPERTIES: :header-args:emacs-lisp: :tangle no :END: A [[file:core.org::*Hydra][Hydra]] which uses the ~Lispy~ package (by abo-abo) to create a set of motions that allow movement around a lisp file easily. 2024-04-18: Still working on this, quite rough around the edges. #+begin_src emacs-lisp (use-package lispy :after (lisp-mode elisp-mode) :hydra (hydra-lispy nil "Move around quickly in Lisp" ("h" #'lispy-left) ("j" ("t" #'lispy-teleport) #'lispy-down) ("k" #'lispy-up) ("l" #'lispy-right) ("d" #'lispy-different) ("u" #'lispy-flow) ("o" #'lispy-oneline) ("m" #'lispy-multiline) ("N" #'lispy-narrow) ("W" #'lispy-widen) ("c" #'lispy-clone) ("fp" #'lispy-ace-paren) ("fs" #'lispy-ace-symbol :exit t) ("H" #'lispy-slurp) ("L" #'lispy-barf) ("M-h" #'lispy-move-left) ("M-j" #'lispy-move-down) ("M-k" #'lispy-move-up) ("M-l" #'lispy-move-right) ("C-g" nil)) :general (nmmap :keymaps '(emacs-lisp-mode-map lisp-mode-map) "." #'hydra-lispy/body)) #+end_src *** Lisp indent function Add a new lisp indent function which indents newline lists more appropriately. #+begin_src emacs-lisp (use-package lisp-mode :defer t :config (defun +oreo/lisp-indent-function (indent-point state) (let ((normal-indent (current-column)) (orig-point (point))) (goto-char (1+ (elt state 1))) (parse-partial-sexp (point) calculate-lisp-indent-last-sexp 0 t) (cond ;; car of form doesn't seem to be a symbol, or is a keyword ((and (elt state 2) (or (not (looking-at "\\sw\\|\\s_")) (looking-at ":"))) (if (not (> (save-excursion (forward-line 1) (point)) calculate-lisp-indent-last-sexp)) (progn (goto-char calculate-lisp-indent-last-sexp) (beginning-of-line) (parse-partial-sexp (point) calculate-lisp-indent-last-sexp 0 t))) ;; Indent under the list or under the first sexp on the same ;; line as calculate-lisp-indent-last-sexp. Note that first ;; thing on that line has to be complete sexp since we are ;; inside the innermost containing sexp. (backward-prefix-chars) (current-column)) ((and (save-excursion (goto-char indent-point) (skip-syntax-forward " ") (not (looking-at ":"))) (save-excursion (goto-char orig-point) (looking-at ":"))) (save-excursion (goto-char (+ 2 (elt state 1))) (current-column))) (t (let ((function (buffer-substring (point) (progn (forward-sexp 1) (point)))) method) (setq method (or (function-get (intern-soft function) 'lisp-indent-function) (get (intern-soft function) 'lisp-indent-hook))) (cond ((or (eq method 'defun) (and (null method) (> (length function) 3) (string-match "\\`def" function))) (lisp-indent-defform state indent-point)) ((integerp method) (lisp-indent-specform method state indent-point normal-indent)) (method (funcall method indent-point state)))))))) (setq-default lisp-indent-function #'+oreo/lisp-indent-function)) #+end_src