/* Copyright (C) 2024 Aryadev Chavali * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License Version 2 for * details. * You may distribute and modify this code under the terms of the GNU General * Public License Version 2, which you should have received a copy of along with * this program. If not, please go to . * Created: 2024-07-26 * Author: Aryadev Chavali * Description: Implementation of numerics */ #include "./numerics.hpp" #include Fraction::Fraction(word_t numerator, word_t denominator) : numerator{numerator}, denominator{denominator}, norm{numerator / ((long double)denominator)} { word_t hcf = gcd(MIN(numerator, denominator), MAX(numerator, denominator)); numerator /= hcf; denominator /= hcf; } // floating point arithmetic inaccuracies blah blah blah better to use // simplified fractions here bool Fraction::operator<(const Fraction other) { if (other.denominator == denominator) return numerator < other.numerator; // TODO: Is it better to use the GCD? return (numerator * other.denominator) < (other.numerator * denominator); } bool Fraction::operator==(const Fraction &other) { return numerator == other.numerator && denominator == other.denominator; } Node::Node(Fraction val, index_t left, index_t right) : value{val}, left{left}, right{right} { } NodeAllocator::NodeAllocator(word_t capacity) : vec{capacity} { } word_t NodeAllocator::alloc_node(Node n) { vec.push_back(n); return vec.size() - 1; } word_t gcd(word_t a, word_t b) { if (a == b) return a; else if (a <= 1 || b <= 1) return 1; for (word_t r = b % a; r != 0; b = a, a = r, r = b % a) continue; return a; } Fraction iterate(std::queue &queue, NodeAllocator &allocator) { if (queue.empty()) return {}; word_t index = queue.front(); Node node = allocator.vec[index]; if (node.left == -1) { allocator.vec[index].left = allocator.alloc_node(Fraction{ node.value.numerator, node.value.numerator + node.value.denominator}); } if (node.right == -1) { allocator.vec[index].right = allocator.alloc_node(Fraction{ node.value.numerator + node.value.denominator, node.value.denominator}); } queue.pop(); queue.push(allocator.vec[index].left); queue.push(allocator.vec[index].right); node = allocator.vec[index]; Fraction best = MAX(node.value, allocator.vec[node.left].value); best = MAX(best, allocator.vec[node.right].value); return best; } std::string to_string(const Fraction &f) { std::stringstream ss; ss << f.numerator << "/" << f.denominator; return ss.str(); } void indent_depth(int depth, std::stringstream &ss) { for (int i = 0; i < depth; ++i) ss << " "; } std::string to_string(const NodeAllocator &allocator, const index_t n, int depth) { if (!n.has_value()) return "NIL"; std::stringstream ss; Node x = allocator.getVal(n.value()); ss << "(" << to_string(x.value) << "\n"; indent_depth(depth, ss); if (x.left == -1) ss << "NIL"; else ss << to_string(allocator, x.left, depth + 1); ss << "\n"; indent_depth(depth, ss); if (x.right == -1) ss << "NIL"; else ss << to_string(allocator, x.right, depth + 1); ss << ")"; return ss.str(); }