/* Copyright (C) 2024 Aryadev Chavali
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License Version 2 for
* details.
* You may distribute and modify this code under the terms of the GNU General
* Public License Version 2, which you should have received a copy of along with
* this program. If not, please go to .
* Created: 2024-07-25
* Author: Aryadev Chavali
* Description: Entrypoint
*/
#include "./numerics.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#define WIDTH 1024
#define HEIGHT 1024
#define FONT_SIZE 20
#define CIRCLE_SIZE 2
#define LINE_TOP (7 * HEIGHT / 16)
#define LINE_BOTTOM (9 * HEIGHT / 16)
std::pair get_fraction_drawable(Fraction f)
{
std::string s{to_string(f)};
int width = MeasureText(s.c_str(), FONT_SIZE);
return std::make_pair(s, width);
}
void draw_fraction(Fraction f, word_t x, word_t y)
{
std::string s;
int width;
std::tie(s, width) = get_fraction_drawable(f);
// Centered at (x, y)
DrawText(s.c_str(), x - width / 2, y - FONT_SIZE, FONT_SIZE, WHITE);
}
struct State
{
NodeAllocator allocator;
std::queue iteration_queue;
word_t root;
struct Bounds
{
Node leftmost, rightmost;
long double lower, upper;
} bounds;
struct Iteration
{
Fraction left, centre, right;
} iteration;
State(const Fraction start) : allocator{256}
{
root = allocator.alloc(start);
iteration_queue.push(root);
bounds.leftmost = allocator.getVal(root);
bounds.rightmost = allocator.getVal(root);
compute_bounds();
}
void do_iteration(void)
{
std::tie(iteration.left, iteration.centre, iteration.right) =
iterate(iteration_queue, allocator);
compute_bound_nodes();
compute_bounds();
}
void compute_bounds()
{
bounds.lower = std::floorl(bounds.leftmost.value.norm);
bounds.upper = std::ceill(bounds.rightmost.value.norm);
}
void compute_bound_nodes()
{
bounds.leftmost = allocator.getVal(0);
while (bounds.leftmost.left.has_value())
bounds.leftmost = allocator.getVal(bounds.leftmost.left.value());
bounds.rightmost = allocator.getVal(0);
while (bounds.rightmost.right.has_value())
bounds.rightmost = allocator.getVal(bounds.rightmost.right.value());
}
constexpr word_t clamp_to_width(long double value)
{
return WIDTH / (bounds.upper - bounds.lower) * (value - bounds.lower);
}
void draw_bounds()
{
word_t lower_x = clamp_to_width(bounds.leftmost.value.norm);
word_t upper_x = clamp_to_width(bounds.rightmost.value.norm);
DrawLine(lower_x, LINE_TOP, lower_x, LINE_BOTTOM, WHITE);
DrawLine(upper_x, LINE_TOP, upper_x, LINE_BOTTOM, WHITE);
}
void draw_nodes()
{
std::stack stack;
stack.push(allocator.getVal(0));
while (!stack.empty())
{
Node n = stack.top();
stack.pop();
word_t x = clamp_to_width(n.value.norm);
DrawLine(x, LINE_TOP, x, LINE_BOTTOM, RED);
if (n.left.has_value())
stack.push(allocator.getVal(n.left.value()));
if (n.right.has_value())
stack.push(allocator.getVal(n.right.value()));
}
}
void draw_iteration_nodes()
{
word_t x_left = clamp_to_width(iteration.left.norm);
word_t x_centre = clamp_to_width(iteration.centre.norm);
word_t x_right = clamp_to_width(iteration.right.norm);
DrawLine(x_left, LINE_TOP, x_left, LINE_BOTTOM, BLUE);
DrawLine(x_right, LINE_TOP, x_right, LINE_BOTTOM, BLUE);
DrawLine(x_centre, LINE_TOP, x_centre, LINE_BOTTOM, GREEN);
}
};
using Clock = std::chrono::steady_clock;
using Ms = std::chrono::milliseconds;
int main(void)
{
// Setup state
State state{{1, 2}};
// Setup meta text (counter, iterations, etc)
word_t count = 1, prev_count = 0;
std::stringstream format_stream;
std::string format_str;
word_t format_str_width = 0;
Fraction previous_leftmost, previous_rightmost;
auto time_current = Clock::now();
auto time_previous = time_current;
constexpr auto time_delta = 10;
InitWindow(WIDTH, HEIGHT, "Calkin-Wilf Tree");
while (!WindowShouldClose())
{
// timer logic
time_current = Clock::now();
if (std::chrono::duration_cast(time_current - time_previous).count() >=
time_delta)
{
time_previous = time_current;
state.do_iteration();
count += 2;
}
// Input logic
if (IsKeyPressed(KEY_SPACE))
{
state.do_iteration();
count += 2;
}
// Meta text logic
if (prev_count != count)
{
prev_count = count;
format_stream << "Count=" << count << "\n\n"
<< "Iterations=" << (count - 1) / 2 << "\n\n"
<< "Lower=" << to_string(state.bounds.leftmost.value)
<< "\n\n"
<< "Upper=" << to_string(state.bounds.rightmost.value);
format_str = format_stream.str();
format_stream.str("");
format_str_width = MeasureText(format_str.c_str(), FONT_SIZE * 2);
}
ClearBackground(BLACK);
BeginDrawing();
DrawLine(0, HEIGHT / 2, WIDTH, HEIGHT / 2, WHITE);
state.draw_nodes();
state.draw_bounds();
state.draw_iteration_nodes();
DrawText(format_str.c_str(), WIDTH / 2 - format_str_width / 2, HEIGHT / 8,
FONT_SIZE, WHITE);
EndDrawing();
}
CloseWindow();
return 0;
}